top of page

AL 09 - Plant Transformation -  Cotton

Laboratory Activities - PlantStress Biotech INCT
  • Searching for vital insect-pest genes/molecules (Helicoverpa armigera and Spodoptera frugiperda), using  large-scale sequencing of their transcriptome and in vitro validation of gene expression.

  • Selection of new Cry molecules with high toxic activity against S. frugiperda and H. armigera.

  • In silico identification of target molecules against insects and nematodes, through the design of specific chemical drugs for the development of new insecticides and nematicides.

  • Analysis of the genome of Meloidogyne spp. for the selection of genes/molecules vital for gall formation.

  • Selection of potential genes involved in the resistance of contrasting genotypes (peanuts, soybean, rice, cotton, and coffee).

  • Integration of monocotyledonous transcriptome data (rice, corn, wheat, Musa spp., and Sorghum spp.) submitted to water deficit, generated by mass sequencing (Illumina – HiSeq) in previous projects.

  • Integration of transcriptome data from drought-tolerant genotypes from Musa spp., Arachis spp., and cowpea submitted to water deficit combined with biotic stress (Meloidogyne spp. or Mycosphaerella) in bioassays.

  • Use of qRT-PCR for validation of key genes expression from metabolic pathways related to plant responses to combined stresses (biotic-biotic, biotic-biotic, abiotic-biotic). 

  • Search and validation of novel regulatory sequences (promoters) responsive to biotic and abiotic stresses, in crop plants, using transient and stable transformation (soybeans, cotton, and maize).

  • Sequencing  and selection of plant small RNAs, mRNAs, and circular RNAs (Arachis spp., Musa spp., soybean, pitangueira, cashew tree) submitted to biotic and/or abiotic stresses, using the Illumina platform.

  • Validation of plant genes function, potentially involved in nematode resistance mechanisms, through molecules overexpression or gene silencing (RNAi) strategies.

  • Validation of nematode genes function, potentially involved in the parasitism mechanisms, through RNAi strategies in model systems.

  • Assessment and monitoring technology of biotech assets prospected for intellectual protection.

  • Development of universal vectors containing all prospected and patented genetic elements by different institutions from the INCT Project.

  • National and international protection of genes and regulatory sequences, via patents.

  • Developing of GM soybean, cotton, and maize plants through overexpression of molecules and/or gene silencing strategies for drought tolerance and nematode resistance.

  • Developing of GM soybean, cotton, and corn plants through overexpressing Bt toxin and dsRNAs sequences applied to H. armigera and S. frugiperda control.

  • Functional validation of multiple pyramided genes involved in multiple traits, including nematodes and insect-pests (S. frugiperda or H. armigera) resistance and drought tolerance in GM soybean and cotton plants.

  • Phenotyping (greenhouse and/or field simulation) GM maize, soybean, and cotton plants for drought tolerance and/or resistance to S. frugiperda, H. armigera and Meloidogyne spp.

Laboratory Description​

The Plant-Pest Molecular Interaction Laboratory (LIMPP) is coordinated by Dr. Maria Fatima Grossi-de-Sa. Research interests include both basic and applied sciences, focusing on plant-pest molecular interactions (pathogens and insect-pests) to develop novel crop protection strategies, especially for cotton and soybean. The LIMPP group’s research is known for its expertise in plant biotechnology using functional genomics, notably working on biotechnological aspects of RNA interfering (RNAi) mechanism applied to insect-pests and phytonematodes. Other current research interests include exploring new technologies for plant genetic transformation and genome editing, novel regulatory sequences for genetic engineering of crop plants for protection against insect-pests and phytonematodes, drought tolerance, and development of recombinant proteins.

Research Lines
  • Search for novel genes/molecules and peptides to be applied on the control of cotton and soybean insect-pests.

  • Search for target genes/molecules of plant parasitic nematodes (Meloidogyne spp., Rotylenchus reniformis, Aphelenchoides spp.) to be applied in gene silencing approaches.

  • Genetic engineering of crop plants using genome editing technologies and target genes/molecules of contrasting soybean genotypes (resistant/susceptible to Meloidogyne spp.).

  • Search for genes/molecules and small RNAs in pest-resistance and drought-tolerant plant genotypes potentialy involved in the response to biotic and abiotic stresses (cross-stress).

  • Validation of novel prospected biotech assets using overexpression of molecules or gene silencing approaches in plant models.

  • Genetic engineering development of crop plants (cotton, soybean, sugarcane) using molecules/dsRNAs overexpression, gene silencing, and genome editing approaches for traits that include pest control, increase in biomass, and drought tolerance.

Sai

Recent Publications

  • ARRAES, F. B. M.; Vasquez, D. D. N.; Tahir, M.; Pinheiro, D. H.; Faheem, M.; Freitas-Alves, N. S.; Moreira-Pinto, C. E.; Moreira, V. J. V.; Paes-de-Melo, B.; Lisei-de-Sá, M. E.; Morgante, C. V.; Mota, A. P. Z.; Lourenço-Tessutti, I. T.; Togawa, R. C.; Grynberg, P.; Fragoso, R. R.; de Almeida-Engler, J.; Larsen Martin, R.; Grossi-de-Sa, M. F. (2022). Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. Plants, v. 11, p. 2744. https://doi.org/10.3390/plants11202744.

 

  • BASSO, M. F.; Lourenço-Tessutti, I. T.; Moreira-Pinto, C. E.; Mendes, R. A. G.; Pereira, D. G.; Grandis, A.; Macedo, L. L. P.; Macedo, A. F.; Gomes, A. C. M. M.; Arraes, F. B. M.; Togawa, R. C.; do Carmo Costa, M. M.; Marcelino-Guimarães, F. C.; Silva, M. C. M.; Floh, E. I. S.; Buckeridge, M. S.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022). Overexpression of the GmEXPA1 gene reduces plant susceptibility to Meloidogyne incognita. Plant Cell Reports, v. 12, p. s00299-022-0294. https://doi.org/10.1007/s00299-022-02941-3.

 

  • BASSO, M. F.; Lourenço-Tessutti, I. T.; Moreira-Pinto, C. E.; Mendes, R. A. G.; Paes-de-Melo, B.; Das Neves, M. R.; Macedo, A. F.; Figueiredo, V.; Grandis, A.; Macedo, L. L. P.; Arraes, F. B. M.; do Carmo-Costa, M. M.; Togawa, R. C.; Enrich-Prast, A.; Marcelino-Guimarães, F. C.; Gomes, A. C. M. M.; Silva, M. C. M.; Floh, E. I. S.; Buckeridge, M. S.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022). Overexpression of a soybean Globin (GmGlb1-1) gene reduces plant susceptibility to Meloidogyne incognita. Planta, v. 256, p. 83. https://doi.org/10.1007/s00425-022-03992-2.

  • DE MOURA, S. M.; Babilonia, K.; de Macedo, L. L. P.; Grossi-de-Sa, M. F.; Shan, L.; He, P.; Alves-Ferreira, M. (2022). The oral secretion from Cotton Boll Weevil (Anthonomus grandis) induces defense responses in cotton (Gossypium spp) and Arabidopsis thaliana. Current Plant Biology, v. 31, p. 100250. https://doi.org/10.1016/j.cpb.2022.100250.

  • DE MOURA, S. M.; Freitas, E. O.; Ribeiro, T. P.; Paes-de-Melo, B.; Arraes, F. B. M.; Macedo, L. L. P.; Paixão, J. F. R.; Lourenço-Tessutti, I. T.; Artico, S.; da Cunha Valença, D.; Silva, M. C. M.; de Oliveira, A. C.; Alves-Ferreira, M.; Grossi-de-Sa, M. F. (2022). Discovery and functional characterization of novel cotton promoters with potential application to pest control. Plant Cell Reports, v. 41, p. 10.1007/s00299. https://doi.org/10.1007/s00299-022-02880-z.

  • DOS SANTOS, C.; Carmo, L. S. T.; Távora, F. T. P. K.; Lima, R. F. C.; da Nobrega Mendes, P.; Labuto, L. B. D.; de Sá M. E. L.; Grossi-de-Sa, M. F.; Mehta, A. (2022). Overexpression of cotton genes GhDIR4 and GhPRXIIB in Arabidopsis thaliana improves plant resistance to root-knot nematode (Meloidogyne incognita) infection. 3 Biotech, v. 12, p. 211. https://doi.org/10.1007/s13205-022-03282-4.

  • FRAGOSO, R. R.; Arraes, F. B. M.; Lourenço-Tessutti, I. T.; Miranda, V. J.; Basso, M. F.; Ferreira, A. V. J.; Viana, A. A. B.; Lins, C. B. J.; Lins, P. C.; Moura, S. M.; Batista, J. A. N.; Silva, M. C. M.; Engler, G.; Morgante, C. V.; Lisei-de-Sá, M. E.; Vasques, R. M.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022). Functional characterization of the pUceS8.3 promoter and its potential use for ectopic gene overexpression. Planta, v. 256, p. 69, 2022. https://doi.org/10.1007/s00425-022-03980-6.

  • KARALIJA, E.; Vergata, C.; Basso, M. F.; Negussu, M.; Zaccai, M.; Grossi-de-Sa, M. F.; Martinelli, F. (2022). Chickpeas? Tolerance of Drought and Heat: Current Knowledge and Next Steps. Agronomy-Basel, v. 12, p. 2248. https://doi.org/10.3390/agronomy12102248.

  • MENDES, R. A. G.; Basso, M. F.; Amora, D. X.; Silva, A. P.; Paes-de-Melo, B.; Togawa, R. C.; Albuquerque, E. V. S.; Lisei-de-Sá, M. E.; Macedo, L. L. P.; Lourenço-Tessutti, I. T.; Grossi-de-Sa, M. F. (2022). In planta RNAi approach targeting three M. incognita effector genes disturbed the process of infection and reduced plant susceptibility. Experimental Parasitology,  v. 238, p. 108246. https://doi.org/10.1016/j.exppara.2022.108246.

  • MOREIRA, V. J. V.; Lourenço-Tessutti, I. T.; Basso, M. F.; Lisei-de-Sá, M. E.; Morgante, C. V.; Paes-de-Melo, B.; Arraes, F. B. M.; Martins-de-Sa, D.; Silva, M. C. M.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022). Minc03328 effector gene downregulation severely affects Meloidogyne incognita parasitismo in transgenic Arabidopsis thaliana. Planta, v. 255, p. 44-59. https://doi.org/10.1007/s00425-022-03823-4.

  • REIS, M. A.; Noriega, D. D.; dos Santos Alves, G.; Coelho, R. R.; Grossi-de-Sa, M. F.; Antonino, J. D. (2022).  Why is oral-induced RNAi inefficient in Diatraea saccharalis? A possible role for DsREase and other nucleases. Pesticide Biochemistry and Physiology, v. 186, p. 105166. https://doi.org/10.1016/j.pestbp.2022.105166.

 

  • RIBEIRO, D. G.; Mota, A. P. Z.; Santos, I. R.; Arraes, F. B. M.; Grunberg, P.; Fontes, W.; de Souza Castro, M.; de Sousa, M. V.; Lisei-de-Sá, M. E.; Grossi-de-Sa, M. F.; Franco, O. L.; Mehta, A. (2022). NBS-LRR-WRKY genes and protease inhibitors (PIs) seem essential for cowpea resistance to root-knot nematode. Journal of Proeomics, v. 261, p. 104575. https://doi.org/10.1016/j.jprot.2022.104575.​​​

 

  • RIBEIRO, T. P.; Vasquez, D. D. N.; Macedo, L. L. P.; Lourenço-Tessutti, I. T.; Valença, D. C.; Oliveira-Neto, O. B.; Paes-de-Melo, B.; Rodrigues-Silva, P. L.; Firmino, A. A. P.; Basso, M. F.; Lins, C. B. J.; Neves, M. R.; Moura, S. M.; Tripode, B. M. D.; Miranda, J. E.; Silva, M. C. M.; Grossi-de-Sa, M. F. (2022). Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW (Anthonomus grandis). International Journal of Molecular Sciences,  v. 23, p. 13713. https://doi.org/10.3390/ijms232213713.

  • TOUZDJIAN PINHEIRO KOHLRAUSCH TÁVORA, F.; de Assis dos Santos Diniz, F.; de Moraes Rêgo-Machado, C.; Chagas Freitas, N.; Barbosa Monteiro Arraes, F.; Chumbinho de Andrade, E.; Furtado, L. L.; Osiro, K. O.; Lima de Sousa, N.; Cardoso, T. B.; Márcia Mertz Henning, L.; Abrão de Oliveira Molinari, P.; Feingold, S. E.; Hunter, W. B.; Grossi-de-Sa, M. F.; Kobayashi, A. K.; Lima Nepomuceno, A.; Santiago, T. R.; Correa Molinari, H. B. (2022).  CRISPR/Cas- and Topical RNAi-Based Technologies for Crop Management and Improvement: Reviewing the Risk Assessment and Challenges Towards a More Sustainable Agriculture. Frontiers in Bioengineering and Biotechnology, v. 10, p. 10:913728. https://doi.org/10.3389/fbioe.2022.913728.

 

  • ARAUJO SOUSA, B.; Nascimento Silva, O.; Farias Porto, W.; Lima Rocha, T.; Paulino Silva, L.; Ferreira Leal, A.P.; Buccini, D.F.; Oluwagbamigbe Fajemiroye, J.; de Araujo Caldas, R.; Franco, O.L.; Grossi-De-Sá, M.F.; de La Fuente Nunez, C.; Moreno, S.E. (2021). Identification of the active principle conferring anti inflammatory and antinociceptive properties in bamboo plant. Molecules, v. 26, p. 3054. https://doi.org/10.3390/molecules2610305.

  • ARRAES, F.B.M.; Martins-de-Sa, D.; Noriega Vasquez, D.D.; Melo, B.P.; Faheem, M.; de Macedo, L.L.P.; Morgante, C.V.; Barbosa, J.A.R.G.; Togawa, R.O.; Moreira, V.J.P.; Danchin, E.G.J.; Grossi-de-Sa, M.F. (2021). Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biology, v. 18, p. 1653-1681. https://doi.org/10.1080/15476286.2020.1861816.

  • BASSO, M.F.; Costa, J.A.; Ribeiro, T.P.; Arraes, F.B.M.; Lourenço-Tessutti, I.T.; Macedo, A.F.; Neves, M.R.; Nardeli, S.M.; Arge, L.W.; Perez, C.E.A.; Silva, P.L.R; De Macedo, L.L.P.; Lisei-de-Sa, M.E.; Amorim, R.M.A.; Pinto, E.R.C.; Silva, M.C.M.; Morgante, C.V.; Floh, E.I.S.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2021). Overexpression of the CaHB12 transcription factor in cotton (Gossypium hirsutum) improves drought tolerance. Plant Physiology and Biochemistry, v. 165, p. 80-93. https://doi.org/10.1016/j.plaphy.2021.05.009.

 

  • CABRAL, D.; Forero Ballesteros, H.; de Melo, B.P.; Lourenço-Tessutti, I.T.; Smões de Siqueira, K.M.; Obicci, L.; Grossi-de-Sa, M.F.; Hemerly, A.S.; de Almeida Engler, J. (2021). The armadillo BTB protein ABAP1 is a crucial player in DNA replication and transcription of nematode-induced galls. Frontiers in Plant Science, v. 12, p. 636663. https://doi.org/10.3389/fpls.2021.636663.

  • GODINHO MENDES, R.A.; Basso, M.F.; Fernandes de Araújo, J.; Paes De Melo, B.; Lima, R.N.; Ribeiro, T.P.; da Silva Mattos, V.; Saliba Albuquerque, E.V.; Grossi-De-Sa, M.; Dessaune Tameirao, S.N.; da Rocha Fragoso, R.; Mattar da Silva, M.C.; Vignols, F.; Fernandez, D.; Grossi-De-Sa, M.F. (2021). Minc00344 and Mj-NULG1a effectors interact with GmHub10 protein to promote the soybean parasitism by Meloidogyne incognita and M. javanica. Experimental Parasitology, v. 229, p. 108153. https://doi.org/10.1016/j.exppara.2021.108153.

  • LISEI-DE-SÁ, M.E.; Rodrigues-Silva, P.L.; Morgante, C.V.; de Melo, B.P.; Lourenço-Tessutti, I.T.; Arraes, F.B.M.; Sousa, J.P.A.; Galbieri, R.; Amorim, R.M.S.; de Lins, C.B.J.; Macedo, L.L.P.; Moreira, V.J.; Ferreira, G.F.; Ribeiro, T.P.; Fragoso, R.R.; Silva, M.C.M.; de Almeida-Engler, J.; Grossi-de-Sa, M.F. (2021). Pyramiding dsRNAs increases phytonematode tolerance in cotton plants. Planta, v. 254, p. 121. https://doi.org/10.1007/s00425-021-03776-0.

  • MENDES, R. A. G.; Basso, M. F.;  Paes-de-Melo, B.; Ribeiro, T. P.; Lima, R. N.; Araujo, J. F.; Grossi-de-Sa, M. F.; Mattos, V. S.; Togawa, R. C.; Albuquerque, E. V. S.; Lisei-de-Sá, M. E.; Silva, M. C. M.; Macedo, L. L. P.; Fragoso, R. R.; Fernandez, D.; Vignols, F.; Grossi-de-Sa, M. F. (2021). The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita. Physiological and Molecular Plant Pathology, v. 114, p. 101630. https://doi.org/10.1016/j.pmpp.2021.101630.

  • MENDES, R.A.G.; Basso, M.F.; Paes-de-Melo, B.; Ribeiro, T.P.; Lima, R.N.; Araujo, J.F.; Grossi-de-Sa, M.; Mattos, V.S.; Togawa, R.C.; Albuquerque, E.V.S.; Lisei-de-Sa, M.E.; Silva, M.C.M.; Macedo, L.L.P.; Fragoso, R.R.; Fernandez, D.; Vignols, F.; Grossi-de-Sa, M.F. (2021). The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita. Physiological and Molecular Plant Pathology, v. 114, p. 101630. https://doi.org/10.1016/j.pmpp.2021.101630.

 

  • MOREIRA-PINTO, C.E.; Ramos Coelho, R.; Borges Leite, A.G.; Amaral Silveira, D.; Aguiar Souza, D.; Biaggioni Lopes, R.; Macedo, L.L.P.; Mattar Silva, M.C.; Ribeiro, T.P.; Morgante, C.V.; Antonino, J.D.; Grossi-de-Sa, M.F. (2021). Increasing susceptibility to through-induced knockdown: a perspective to combine biocontrol and biotechnology. Pest Management Science, v. 77, p. ps.6430. https://doi.org/10.1002/ps.6430.

  • MOREIRA-PINTO, C.E.; Coelho, R.R.; Leite, A.G.B.; Silveira, D.A.; Souza, D.A.; Lopes, R.B.; Macedo, L.L.P.; Silva, M.C.M.; Ribeiro, T.P.; Antonino, J.D.; Grossi-de-Sa, M.F. (2021). Increasing Anthonomus grandis susceptibility to Metarhizium anisopliae through RNAi-induced AgraRelish knockdown: a perspective to combine biocontrol and biotechnology. Pest Management Science, v. 77, p. 4054-4063. https://doi.org/10.1002/ps.6430.

  • MOTA, A.P.Z.; Brasileiro, A.C.M.; Vidigal, B.; Oliveira, T.N.; da Cunha Quintana Martins, A.; Saraiva, M.A.P.; de Araújo, A.C.G.; Togawa, R.C.; Grossi-de-Sá, M.F.; Guimaraes, P.M. (2021). Defining the combined stress response in wild Arachis. Scientific Reports, v. 11, p. 11097. https://doi.org/10.1038/s41598-021-90607-7.

  • PAES DE MELO, B.; Lourenço-Tessutti, I.T.; Fraga, O.T.; Pinheiro, L.B.; de Jesus Lins, C.B.; Morgante, C.V.; Engler, J.A.; Reis, P.A.B.; Grossi-De-Sá, M.F.; Fontes, E.P.B. (2021). Contrasting roles of GmNAC065 and GmNAC085 in natural senescence, plant development, multiple stresses and cell death responses. Scientific Reports, v. 11, p. 11178. https://doi.org/10.1038/s41598-021-90767-6.

  • PAES DE MELO, B.; Moura, S.M.; Morgante, C.V.; Pinheiro, D.H.; Alves, N.S.F.; Rodrigues-Silva, P.L.; Lourenço-Tessutti, I.T.; Andrade, R.V.; Fragoso, R.R.; Grossi-de-Sa, M.F. (2021). Regulated promoters applied to plant engineering: an insight over promising soybean promoters under biotic stress and their cis-elements. Biotechnology Research and Innovation, v. 5, p. e2021005. http://dx.doi.org/10.4322/biori.202105.

 

  • RIBEIRO, T.P.; Lourenço-Tessutti, I.T.; De Melo, B.P.; Morgante, C.V.; Filho, A.S.; Lins, C.B.J.; Ferreira, G.F.; Mello, G.N.; Macedo, L.L.P.; Lucena, W.A.; Silva, M.C.M.; Oliveira-Neto, O.B.; Grossi-de-Sa, M.F. (2021). Improved cotton transformation protocol mediated by Agrobacterium and biolistic combined-methods. Planta, v. 254, p. 20. https://doi.org/10.1007/s00425-021-03666-5.

 

  • RODRIGUES-SILVA, P. L.; Rodrigues, M. T.; Figueiredo, L. H. M.; Grossi-de-Sa, M. F. (2021). Tendências quanto ao conhecimento e às aplicações biotecnológicas do Psidium guineense evidenciadas pelo monitoramento tecnológico. Cadernos de Ciência & Tecnologia, v. 38, p. e26704. http://dx.doi.org/10.35977/0104-1096.cct2021.v38.26704.

  • BASSO, M.F.; Arraes, F.B.M.; Grossi-de-Sa, M.; Vaz-Moreira, V.J.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2020). Insights into genetic and molecular elements for transgenic crop development. Frontiers in Plant Science, v. 11, p. 509. https://doi.org/10.3389/fpls.2020.00509.

 

  • BASSO, M.F.; Lourenço-Tessutti, I.T.; Busanello, C.; Pinto, C.E.M.; Oliveira-Freitas, E.; Ribeiro, T.P.; Almeida-Engler, J.; Oliveira, A.C.; Morgante, C.V.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2020). Insights obtained using different modules of the cotton uceA1.7 promoter. Planta, v. 251, p. 56. https://doi.org/10.1007/s00425-020-03348-8.

 

  • BASSO, M.F.; Lourenço-Tessutti, I.T.; Mendes, R.A.G.; Pinto, C.E.M.; Bournaud, C.; Gillet, F.X.; Togawa, R.C.; Macedo, L.L.P.; Almeida-Engler, J.; Grossi-de-Sa, M.F. (2020). MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita. Scientific Reports, v. 10, p. 6991. https://doi.org/10.1038/s41598-020-63968-8.

  • BEVITORI, R.; Sircar, S.; Mello, R.N.; Togawa, R.C.; Cortes, M.V.C.B.; Oliveira, T.S.; Grossi-de-Sa, M.F.; Parekh, N. (2020). Identification of co-expression gene networks controlling rice blast disease during an incompatible reaction. Genetics Molecular Research, v. 19, p. gmr18579. https://doi.org/10.4238/gmr18579.

  • CABRAL, D.N.; Banora, M.Y.; Antonino, J.D.; Rodiuc, N.; Vieira, P.; Coelho, R.R.; Chevalier, C.; Eekhout, T.; Engler G.; De-Veylder, L.; Grossi-de-Sa, M.F.; Almeida-Engler, J. (2020). The plant WEE1 kinase is involved in checkpoint control activation in nematode-induced galls. New Phytologist, v. 225(1), p. 430-447. https://doi.org/10.1111/nph.16185.

 

  • CAMPOS, M.L.; Prado, G.S.; Santos, V.O.; Nascimento, L.C.; Dohms, S.M.; Cunha, N.B.; Ramada, M.H.S.; Grossi-de-Sa, M.F.; Dias, S.C. (2020). Mosses: versatile plants for biotechnological applications. Biotechnology Advances, v. 6, p. 107533. https://doi.org/10.1016/j.biotechadv.2020.107533.

 

  • FIRMINO, A.A.P.; Pinheiro, D.H.; Pinto, C.E.M.; Antonino, J.D.; Macedo, L.L.P.; Martins-de-Sa, D.; Arraes, F.B.M.; Coelho, R.R.; Fonseca, F.C.A.; Silva, M.C.M.; Almeida-Engler, J.; Silva, M.S.; Lourenço-Tessutti, I.T.; Terra, W.R.; Grossi-de-Sa, M.F. (2020). RNAi-mediated suppression of Laccase2 impairs cuticle tanning and molting in the cotton boll weevil (Anthonomus grandis). Frontiers in Physiology, v. 11, p. 591569. https://doi.org/10.3389/fphys.2020.591569.

 

  • GRYNBERG, P.; Togawa, R.C.; Freitas, L.D.; Antonino, J.D.; Rancurel, C.; Costa, M.M.C.; Grossi-de-Sa, M.F.; Miller, R.N.G.; Brasileiro, A.C.M.; Guimaraes, P.M.; Danchin, E.G.J. (2020). Comparative genomics reveals novel target genes towards specific control of plant-parasitic nematodes. Genes, v. 11, p. 1347. https://doi.org/10.3390/genes11111347.

  • IBARRA, L.N.; Alves, A.E.O.A.; Antonino, J.D.; Prado, G.S.; Pinto, C.E.M.; Soccol, C.R.; Vasconcelos, E.A.R.; Grossi-de-Sa, M.F. (2020). Enzymatic activity of a recombinant β-1,4-endoglucanase from the cotton boll weevil (Anthonomus grandis) aiming second generation ethanol production. Scientific Reports, v. 10(1), p. 5367. https://doi.org/10.1038/s41598-019-56070-1.

  • MOTA, A.P.Z.; Fernandez, D.; Arraes, F.B.M.; Petitot, A.S.; Paes-Melo, B.; Lisei-de-Sa, M.E.; Guimaraes, P.M.; Brasileiro, A.C.M.; Albuquerque, E.V.S.; Danchin, E.G.J.; Grossi-de-Sa, M.F. (2020). Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics. Molecular Genetics and Genomics, v. 295, p. 1063-1078. https://doi.org/10.1007/s00438-020-01677-7.

 

  • MOURA, S.M.; Rossi, M.L.; Artico, S.; Grossi-de-Sa, M.F.; Martinelli, A.P.; Alves-Ferreira, M. (2020). Characterization of floral morphoanatomy and identification of marker genes preferentially expressed during specific stages of cotton flower development. Planta, v. 252(4), p. 71. https://doi.org/10.1007/s00425-020-03477-0.

  • NORIEGA-VASQUEZ, D.D.; Arraes, F.B.M.; Antonino, J.D.; Macedo, L.L.P.; Fonseca, F.C.A.; Togawa, R.C.; Grynberg, P.; Silva, M.C.M.; Negrisoli, A.S.; Grossi-de-Sa, M.F. (2020). Transcriptome analysis and knockdown of the juvenile hormone esterase gene reveal abnormal feeding behavior in the sugarcane giant borer. Frontiers in Physiology, v. 11, p. 588450. https://doi.org/10.3389/fphys.2020.588450.

 

  • NORIEGA-VASQUEZ, D.D.; Arraes, F.B.M.; Antonino, J.D.; Macedo, L.L.P.; Fonseca, F.C.A.; Togawa, R.C.; Grynberg, P.; Silva, M.C.M.; Negrisoli, A.S.; Morgante, C.V.; Grossi-de-Sa, M.F. (2020). Comparative gut transcriptome analysis of Diatraea saccharalis in response to the dietary source. PLoS One, v. 15(8), p. e0235575. https://doi.org/10.1371/journal.pone.0235575.

 

  • PAES-MELO, B.; Lourenço-Tessutti, I.T.; Morgante, C.V.; Santos, N.C.; Pinheiro, L.B.; Jesus-Lins, C.B.; Silva, M.C.M.; Macedo, L.L.P.; Fontes, E.P.B.; Grossi-de-Sa, M.F. (2020). Soybean embryonic axis transformation: combining biolistic and Agrobacterium-mediated protocols to overcome typical complications of in vitro plant regeneration. Frontiers in Plant Science, v. 11, p. 1228. https://doi.org/10.3389/fpls.2020.01228.

 

  • PAES-MELO, B.; Lourenço-Tessutti, I.T.; Paixao, J.F.R.; Noriega-Vasquez, D.D.; Silva, M.C.M.; Almeida-Engler, J.; Fontes, E.P.B.; Grossi-de-Sa, M.F. (2020). Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit. Scientific Reports, v. 10(1), p. 16231. https://doi.org/10.1038/s41598-020-72464-y.

 

  • RIBEIRO, T.P.; Basso, M.F.; Carvalho, M.H.; Macedo, L.L.P.; Silva, D.M.L.S.; Lourenço-Tessutti, I.T.; Oliveira-Neto, O.B.; Romano, E.; Lucena, W.A.; Silva, M.C.M.; Tripode, B.M.D.; Abreu-Jardin, T.P.F.; Miranda, J.E.; Alves-Ferreira, M.; Morgante, C.V.; Grossi-de-Sa, M.F. (2020). Stability and tissue-specific Cry10Aa overexpression improves cotton resistance to the cotton boll weevil. Biotechnology Research & Innovation, v. 3, p. 15. https://doi.org/10.1016/j.biori.2019.12.003.

 

  • SANTOS, C.; Nogueira, F.C.S.; Domont, G.B.; Fontes, W.; Prado, G.S.; Habibi, P.; Santos, V.O.; Oliveira-Neto, O.B.; Grossi-de-Sa, M.F.; Jorrín-Novo, J.V.; Franco, O.L.; Mehta, A. (2020). Proteomic analysis and functional validation of a Brassica oleracea endochitinase involved in resistance to Xanthomonas campestres. Frontiers in Plant Science, v. 11, p. 201. https://doi.org/10.3389/fpls.2019.00414.

Sai

Our Team

Fátima Grossi (1).jpeg

Maria Fatima Grossi-de-Sa

Team Leader

Maria Fatima Grossi-de-Sa holds a bachelor's degree in Biological Sciences - biomedicine modality from the University of Brasilia (1979), a master's degree in Biological Sciences (Molecular Biology) from the University of Brasilia (1982), a doctorate (Doctorat Et Sciences) in Molecular Biology from the Université Paris VII-France (1987), and was a postdoctoral fellow at the Plant Genetic System-Ghent-Belgium (1988) and at the University of California in San Diego (1995-1996). She is the Lead Researcher at EMBRAPA Genetic Resources and Biotechnology (since 1989) and professor at the Catholic University of Brasília (since 2004). She is a CNPq productivity fellow (level 1A), member of CAPES International Advisory Committee (since 2007), full member (Agrarian Sciences) of the Brazilian Academy of Sciences (elected in 2011) and a member of the World Academy of Science -TWAS (elected in 2014). Among other awards and honors, she notably received the Scopus Award 2010 (Elsevier / CAPES) and the medal of the National Order of Scientific Merit (2018). She held the position of coordinator at the Biotechnology area and alternate member of CTC-ES at CAPES (2007-2014), and the presidency of the Brazilian Society of Biotechnology - SBBiotec (2008-2013 and 2016-current). She has experience in the field of Plant Genetics and Biotechnology, with an emphasis on Genetic Engineering and Plant Molecular Biology. The primary focus of her research is on the development of biotechnological products, using different strategies, including genome editing, aiming to increase tolerance and resistance to biotic and abiotic stress in plants. Morevoer, biotechnological tools are applied for the development of biopharmaceuticals. Her main research fields include: plant defense proteins, insecticidal proteins, plant-pest molecular interaction, and biotechnological assets applied to agribusiness. 

Carolina Vianna Morgante

She is undergraduated in Biological Sciences at University of Sao Paulo - Biosciences Institute (1999). Carolina Morgante holds a master's and doctorate's degrees in Agronomy (Genetics and Plant Breeding) from the University of São Paulo (2003 and 2008, respectively). She is currently a researcher at Embrapa Semiárido and has experience in Genetics, focusing on Plant Genetics and Molecular.

Diana_Isolda_Clotilde_Fernandez.jpg

Diana Isolda Clotilde Fernandez

She is currently a permanent Senior researcher at the French Research Institute for Development - Institut de Recherche pour le Développement (IRD, France) and remained until November 2020 at Embrapa-Cenargen. She has experience in Biochemistry, with emphasis on Molecular Biology, working on the following subjects: phytopathology, plant-pathogen interactions, plant immunity, nematodes, rust, rice, Coffea arabica, Hemileia vastatrix, Meloidogyne spp.

Isabela.jpeg

Isabela Tristan Lourenço Tessutti

Isabela is undergraduated in Biological Sciences from the University of Brasilia (2006), and holds a master's and a doctorate's degree in Molecular Biology from the same University (2008 and 2014, respectively). She was a post-doctoral fellow (2020) at the Institut National de Recherche pour l'Agriculture , l'Alimentation et l'Envrionment (INRA - Sophia Antipolis/France). Recently,  she works at the Plant-Pest Interaction Laboratory at Embrapa Genetic Resources and Biotechnology, coordinated by Dr. Maria Fatima Gross-de-Sa. Her main research fields are: plant-pest interaction, plant resistance to biotic stress (nematodes and insects), and tolerance to abiotic stress (drought). She has expertise in: functional genomics for phytonematodes,  insects, plants and bacteria; plant genetic transformation; gene (RNAi) silencing; heterologus expression of proteins using bacterial cells; functional characterization of plant promoters; spacial and temporal determinarion of gene expression using real-time PCR; genome editing using CRISPR methodology for biomass increase, drought tolerance and pest resistance. 

55964003_297025717883803_3927442731118362624_n.jpg

Leonardo Lima Pepino de Macedo

Leonardo is undergraduated in Biological Sciences from the Federal University of Rio Grande do Norte (2005). He holds a master degree in Biochemistry from the same University (2007) and a doctorate's degree in Genomic Sciences and Biotechnology from the Catholic University of Brasília (2012). He has experience in Biochemistry and Molecular Biology, with expertise in the following areas: cloning and expression of proteins in heterologous systems; bioprospecting proteins with entomotoxic activity (vicillins, lectins, proteinase inhibitors and Cry toxins) aiming at the control of dipterous, lepidopteran and coleopteran insects; development of gene silencing strategies via RNAi for the control of insect pests.

Maria Eugenia Lisei de Sa.jpg

Maria Eugenia Lisei de Sa

Maria Eugenia is undergraduated in Biological Sciences from Faculdades Metodistas Integradas Isabela Hendrix (1981), Master in Agronomy (Phytotechnics) from the Universidade Federal do Ceará (1984), PhD in Genetics and Biochemistry from the Universidade Federal de Uberlândia (2004) and post-doctorate fellow in Biotechnology at the Institute de Recherche pour le Développement-França (2013). She is Researcher (II) at the Minas Gerais Agricultural Research Corporation (EPAMIG) and currently works as a collaborative researcher at Embrapa Genetic Resources and Biotechnology -Cenargen. He has experience in the field of soybean breeding, with an emphasis on the development of soybean cultivars with characteristics suitable for human consumption. Her expertise lies on plant defense proteins (proteinase inhibitors, alpha-amylase inhibitors, lectins, defensins, osmotins); plant-pest molecular interaction; development of genetically modified plants for resistance to biotic stress (insects and nematodes) and tolerance to abiotic stress.

Maria Cristina Mattar da Silva.gif

Maria Cristina Mattar da Silva

Maria Cristina is undergraduated in Biological Sciences from the Universidade Estadual Paulista Júlio de Mesquita Filho (1984) and from Universidade de Brasília (1987). She holds a master's degree in Biological Sciences (Molecular Biology) from the Universidade de Brasília (1992) and a doctorate's degree in Biological Sciences (Molecular Biology) from University of Brasília (2002). She is a Researcher at Embrapa Genetic Resources and Biotechnology since 1989. She is expert in plant molecular biology, working in the field of plant biotechnology for biotic and abiotic stress. The main focus of her researches are: evolution of molecules in vitro for selection of variants with improved activity; molecular studies of plant-pest interaction for insect resistance. Currently, she is a Member of the Brazilian Society of Biotechnology.

Wagner Alexandre Lucena.jpg

Wagner Alexandre Lucena

Wagner is undergraduated in Biological Sciences from the Federal University of Pernambuco (1994). He holds a master's degree in Genetics from the Federal University of Pernambuco (1998) and a doctorate's degree from the Universidade Federal do Rio Grande do Sul (2012). He is currently a researcher at the Brazilian Agricultural Research Corporation. He has experience in the field of Agronomy, with emphasis on Molecular Vegetal Biology, working on the following areas: prospection of genes of agricultural interest; structural bioinformatics (DM and molecular modeling); construction of synthetic Cry genes; transgenic cotton for insect pest control and fiber quality; insect-pest transcriptome (Bacillus thuringiensis, Spodoptera frugiperda, Anthonomus grandis, Heliothis virescens, Pectinophora gossypiella and Alabama argillaceae).

Contact

Maria Fatima Grossi de Sá

EMBRAPA Genetic Resources and Biotechnology

W5 Norte Avenue (end) - P.O. Box 02372 - Postal Code 70770-917 - Brasília, DF - Brazil

E-mail: fatima.grossi@embrapa.br

Phone number: +55 61 3448-4705

bottom of page