Resultados da busca
72 results found with an empty search
- Patents | inctplantstress
Here you can find all registered patents. Results of works carried out by the INCT PlantStress Biotech network. Publications Patents RELEVANT PATENTS (FROM 2017) Application Patents / Grant Patents / Licensed Patents ALVES-FERREIRA, M, Conforte, AJ, Dias, FG, Malato, MB, Grossi-de-Sa, MF, Nepomuceno, AL (2018). Compositions and Methods for Modifying Gene Expression Using Water Deficit-Inducible Soybean Promoter in Plants. BR1020180037692. Instituição de registro: INPI - Instituto Nacional da Propriedade Industrial. BRASILEIRO, ACM, Guimaraes, PM, Araújo, ACG, Lacorte, CC (2018) Método para Produção de Plantas com Tolerância a Estresse Abiótico e com Resistência a Pragas. BR102018003666-1. Instituição de registro: INPI - Instituto Nacional da Propriedade Industrial. FREITAS-SILVA, MV, Barreto-Bergter, E, Silva-Neto MAC, Montebianco, CB, Bernardino, MC, Mattos, B,Carvalho, SS (2017). Composição Praguicida, Uso, Método de Controle de Patógenos de Plantas, Método de Controle de Propagação de Insetos e Processo de Obtenção de Proteínas de Fungos. BR10201700204. Instituição de registro: INPI – Instituto Nacional da Propriedade Industrial. FREITAS-SILVA, MV, Côrrea, RL, Vidal, MS, Barroso, PAV. Teste Molecular Voltado para a Identificação e o Diagnóstico In Vitro do Vírus Responsável pela Doença Azul do Algodoeiro (CLRDV). PI06001513. Instituição de registro: INPI - Instituto Nacional da Propriedade Industrial. Concessão: 15/08/2017 . GUIMARÃES, LM, Batista, JAN, Viana, AMB, Fragoso, RR, Silva, MCM, Grossi-de-Sa, MF. Composições e Métodos para Modificar a Expressão de Genes Usando o Promotor do Gene da Proteína de Conjugação Ubiquitina de Plantas de Soja. INPI -Data do Depósito: 05/02/2007. CARTA PATENTE Nº PI0701172-5, concessão: 26/11/2019 . GROSSI-DE-SA, MF, Silva, MCM, Del Sarto, RP, Rocha, TL. Mutantes de Inibidores de Alfa Amilases Isolados de Phaseolus vulgaris com propriedades de Controlar Insetos-Praga, Composições Contendo Tais Mutantes e Métodos de Obtenção dos Mesmos e de Linhagens Transgênicas. INPI-Brazil: PI1102841-6, Deposito: 08/06/2011. CARTA PATENTE Nº PI 1102841-6. Concessão: 21/11/2018 . GROSSI-DE-SA, M.F.; Grossi-de-Sa, M.F; Silva, M. C. M.; Fonseca, F. C. A.; Macedo, L. L. P.; Lourenco, I. T.; Albuquerque, E. V. S. (2013). Aparato e método de criação de larvas de insetos em laboratório. Patent application, BR1020130331120, 20/12/2013, INPI-Brazil. CARTA PATENTE Nº BR102013033112-0. Concessão: 24/11/2020 . GROSSI-DE-SA, MF, Guimarães, LM, Batista, JAN, Viana, AAB, Fragoso, RR, Rocha, T (2007). Composições e métodos para modificar a expressão de genes usando o promotor do gene da proteína de Conjugação à ubiquitina de plantas de Algodão. 2007, Brasil. INPI – Brazil, PI07012306, Deposito: 05/02/2007, Publication Date: 23/09/2008. CARTA PATENTE Nº PI 0701230-6 B1. Concessão: 26/06/2018 . GROSSI-DE-SA, MF, Macedo, LLP. Silva, MCM, Almeida Garcia, R, Silva, LP, Vila A (2018). Pesticide, European Patent Office. WO2020007450, PCT/EP2018/067922. Patent Application: 03/07/2018. GROSSI-DE-SA, MF, Brasileiro, ACM, Guimarães, PM, Morgante, CV, Lourenço-Tessutti, IT, Arraes, FBM, Pereira, BM (2022). High Throughput Soybean Root Disease Screen. US Patent Application WO2024073346. filled Patent: 26/09/2022. GROSSI-DE-SA, MF, Macedo, LLP, Pinto, CLM, Leite, AGB, Silva, MCM, Lourenço-Tessutti, IT, Morgante, CV (2020). Método para Produzir Planta Resistente a Inseto Praga e Moléculas de Ácido Nucleico Utilizadas para Obtenção de Tal Planta Através de dsRNAs Relacionados a Ecdise. PI1020200043129 A2. Instituição de registro: INPI - Instituto Nacional da Propriedade Industrial. GROSSI-DE-SA, MF, Macedo, LLP, Salles-Filho, ALO, Silva, MCM, Lourenço-Tessuti, IT, Morgante, CV (2025). Biocomplexos para modificação genética in planta. 2025, Brasil. Patente: Privilégio de Inovação. Número do registro: BR10202500402. INPI - Instituto Nacional da Propriedade Industrial. Depósito: 28/02/2025. GROSSI-DE-SA, MF, Silva, MCM, Macedo, LLP, Lourenço-Tessutti, IT, Morgante, CV, Leite, AGB (2021). Silenciamento do gene para a proteína caderina para aplicação no controle do inseto-praga, Anthonomus grandis, via RNA interferente. 2021, Brasil.Patente: Privilégio de Inovação. Número do registro: BR1020210115300, Instituição de registro: INPI - Instituto Nacional da Propriedade Industrial. Depósito: 14/06/2021. Hemerly, AS, Cavalcanti, PF, Gong P, Nelissen H, Inze D, Grossi-de-Sa, MF, Basso, MF, Morgante, CV, Lisei-de-Sa, ME (2020). Method to increase plant biomass, plant yield and plant drought tolerance. Continuation in part (CIP) patent application US†20160177327†A1. United States Patent and Trademark Office Patent Filling: 04/05/2020. Patent Grant: 13/12/2022. Licensed Patent: 2023 – INARI SEEDesign Company. MACEDO, LLP, Grossi-de-Sa, MF, SILVA, MCM, GARCIA, RAG, Freire, EVSA (2017). Aumento da Eficácia de Supressão de Expressão de Genes por Meio do Uso de Molécula de RNA com Estrutura Estabilizada. BR1020170069044. Instituição de registro: INPI - Instituto Nacional da Propriedade Industrial. REMER, R. A.; Margis, R.; Lima, M. C.; Coronha, L. M.; Alves-Ferreira. Produto Farmacêutico e Processo para sua Produção. PI03051978. Instituição de registro: INPI – Instituto Nacional da Propriedade Industrial. Depósito: 13/11/2003; Concessão: 02/04/2019 . ROCHA-LIMA, T, Evaristo, RGS, Grossi de Sa, MF, Silva, MCM, Polez, VLP, ROESSNER, U, Bacic, T. (2017). Nematotoxic composition of synergistic effect. use of a nematotoxic composition of synergistic effect. United States Patent and Trademark Office. US9750247B2. Patent Application: 26/12/2012; PCT Application: 26/12/2013; Patent Grant: 05/09/2017 . ROCHA-LIMA, T, Grossi-de-Sa, MF, Silva, MCM, Polez, VP, Evaristo, RGS, Roessner, Um, Bacic, T (2013). Composição nematotoxica de efeito sinergico, uso de composição nematotóxica de efeito sinérgico. 2013, Brasil.Patente: Privilégio de Inovação. Número do registro: BR0020130095109, Instituição de registro: INPI - Instituto Nacional da Propriedade Industrial. Depósito: 26/12/2013; Depósito PCT: 26/12/2013; Concessão: 03/11/2021 . GROSSI-DE-SA, MF, Silva, MCM, Gomes Jr, JE, Lourenco, IT, Macedo LLP, Lucena WA, Fonseca, FCA (2013). Moléculas variantes sintéticos de toxinas Cry1IA12 com propriedades de controlar insetos-praga, composições contendo tais mutantes e método de utilização dos mesmos: BR102012033542-5 A2, concessão: 24/08/2021 . Synthetic variant molecules of toxins Cry1IA12 with properties to control pest insects, compositions containing such mutants and method of use of the same: AR094338A1, concessão: 01/12/2023 . Instituição de registro: WIPO - World Intellectual Property Organization. CARNEIRO, NP, Almeida-Carneiro, A, Hercos Valicente, F, Martins Mendes S, Alvs, MC, Neto Parentoni, S (2024). Method for the control of populations of insect pests resistant to the VIP3AA Protein. INPI BR102023004777A2 (14/03/2023), PCT PCT/BR2024/050091 (13/03/2024), WO2024187259 (18/09/2024). Carneiro, NP, Valicente, FH, Carneiro, AA, Noda, RW, Meire,CA, Barros, BA (2018). Molécula de ácido nucleico cry1DA com códons otimizados, construções de DNA, vetor, célula hospedeira, célula vegetal, planta transgênica, métodos de transformação e de controle de pragas (Pedido de patente BR1020180092638. Instituto Nacional da Propriedade Industrial – INPI.
- Seminars e Lectures | inctplantstress
Seminars e Lectures Plant and Animal Genome Conference 2023 (PAG 30) 13 a 18 de janeiro de 2023 – San Diego/EUA Integrated Omics Data Unravel Soybean Mechanisms Associated with Root-Knot Nematode Tolerance 53º Congresso Brasileiro de Fitopatologia 7 a 10 de agosto de 2023 – Brasília/DF RNAi-mediated parasitism gene silencing as a new source of resistance against the root-knot nematode International Congress of Plant Pathology 2023 20 a 25 de agosto de 2023 – Lyon/França RNAi-mediated parasitism gene silencing as source of crop protection resistance to Meloidogyne incognita 68º Congresso Brasileiro de Genética 12 a 15 de setembro de 2023 – Ouro Preto/MG RNAi technology: Developing RNAi-based solutions for crop plants Simpósio e Diplomação de Novos Membros Afiliados da ABC 2023-2027 – Região Norte 27 de outubro de 2023 – Palmas/TO Palestra Magna – RNA Technology: challenges and developing RNAi-based solutions for crop plants (From Bench to Market: developed biotech products) VIII Simpósio Brasileiro de Genética Molecular de Plantas 30 de maio a 2 de junho de 2023 – Florianópolis/SC Organização da sessão (Chair) Applied Plant Biotechnology International Plant & Animal Genome 31 - PAG 2024 San Diego on January 12-17, 2024- San Diego, CA, USA Palestra: RNAi-mediated down-regulation of the endogenous aip10 genes in transgenic cotton (Gossypium hirsutum ) events improves earliness, productivity, and drought tolerance XXIX Congresso Brasileiro de Entomologia e XIII CLE RNAi approach for insect pest control: Advances, applications, and Challenges 22 a 26 de setembro de 2024- Uberlandia – MG Palestra: RNAi approach for insect pest control: Advances, applications, and Challenges International Plant Molecular Biology (IPMB) 24-28 de junho de 2024 – Queensland- Australia Palestra: RNAi for insect pest control: Transgenic and topical approaches AgroBrasilia 2024 20-24 de maio de 2024 Brasilia-DF-Brasil Palestra: Controle Biológico de Pragas e Doenças na sua lavoura: Tecnologia de interferência de RNA (RNAi) para melhoramento de plantas e controle de pragas ICE2024 Kyoto- XXVII International Congress of Entomology 25-30 de Agosto de 2024 Palestra: RNAi and Bt approaches for insect pest control: advances, applications, and challenges International Plant & Animal Genome 32 - PAG 2025 San Diego on January 10-15, 2025 - San Diego, CA, USA Palestra: An Ex Vitro Soybean Hairy Root System for Screening Target Molecules Applied in Biotech Approaches
- AL 16 - Maite Vaslin de Freitas Silva | inctplantstress
Learn more about AL15, its main goals within the project and meet the laboratory's work team. AL 16 - Biotechnological Applications of Microorganisms Laboratory Description - PlantStress Biotech INCT Virus:plant interaction and the identification of viruses associated with cotton diseases through sequencing and characterization of new viruses, development of molecular diagnostic tests, transcriptome and miRNA profile during viral infection. The main lines are the characterization of the molecular mechanism of resistance to CBD; the use of fungal molecules as inducers of protection against viral diseases; and the expression of SARS-CoV-2 antigens in plants. Research Lines Cell Biology, Biochemistry and Genetics of Microorganisms Biotechnological Applications of Microorganisms and their Products Microorganisms/Virus-Host Interactions Our Team Maite Vaslin de Freitas Silva Team Leader Associate Professor IV, member of PPG-Micro and PPG-PBV at UFRJ. Director of the Brazilian Society of Virology. Master's and PhD in Genetics from UFRJ in molecular biology of plants. Postdoc at IB UFRJ studying RNAi in antiviral defense. Visiting professor IB UFRJ 199-2001 and permanent professor at IMPG since 2002. I coordinate the Plant Molecular Virology Laboratory, whose lines are: the study of the virus: plant interaction and the identification of viruses associated with cotton diseases through sequencing and characterization of new viruses, development of molecular diagnostic tests, transcriptome and miRNA profile during viral infection. Today the main lines are the characterization of the molecular mechanism of resistance to CBD; the use of fungal molecules as inducers of protection against viral diseases; and the expression of SARS-CoV-2 antigens in plants. The group has 2 patents filed and 1 granted and is encouraging the birth of startups based on the research developed. Contact Maite Vaslin de Freitas Silva Federal University of Rio de Janeiro - UFRJ Department of Virology – Paulo de Góes Institute of Microbiology – UFRJ E-mail: maite@micro.ufrj.br Phone:+55 21 2560 8344
- AL01 - Robert Neil Gerard Miller | inctplantstress
Learn more about AL01, its main goals within the project and meet the laboratory's work team. AL 01 - Genomics and Proteomics Laboratory Activities - PlantStress Biotech INCT Integration data from monocotyledon transcriptome (rice, corn, wheat, Musa and sorghum) submitted to water deficit, generated by mass sequencing (Illumina - HiSeq) in previous projects. Integration of transcriptome data from drought-tolerant genotypes of Musa spp., Arachis spp. and cowpea subjected to water deficit combined with biotic stress (Meloidogyne spp. or Mycosphaerella ) in bioassays. Integration and sequencing of transcripts of fungus-tolerant genotypes in environments subjected to multiple stresses (Musa X Mycosphaerella musicola and Fusarium oxysporun ). Validation of key genes expression in the metabolic pathways of plants' response to combined stresses (biotic-biotic; biotic-biotic; abiotic-biotic) by qRT-PCR. Small RNAs, mRNAs and circular plant RNAs sequencing from Arachis , Musa , soybean, pitangueira, and cashew, previously subjected to biotic and/or abiotic stresses, using the Illumina platform. Validation of plant genes function potentially involved in drought tolerance mechanisms in Arabidopsis , rice or Setaria plants by overexpression or silencing strategies. Organize, maintain and share an in vivo bank of the innovation assets obtained in the project shared by INCT members. Laboratory Description The Genomics and Proteomics Laboratory studies the prospection and identification of new genes, regulatory sequences and molecules involved with the resistance/tolerance responses of plants to biotic and abiotic stresses, aiming at the elucidation of the molecular mechanisms of plants that occur in response to different stresses, combined or not. The research group also performs fucntion validation of these assets in model plants. Research Lines Prospecting genes/molecules of interest for pest and drought control in wild germplasm of Musa spp. Prospecting target molecules in phytoparasitic nematodes (Meloidogyne spp.) and phytopathogenic fungi (Pseudocercospora spp.) for pest control. Prospecting for small RNAs in plant genotypes that are resistant/tolerant to pests and drought that may be involved in responding to these stresses. Prospecting for genes/molecules that are efficient in pest control and tolerance to water deficit simultaneously (cross-stress). Validation of prospective innovation assets by their overexpression or gene silencing in model plants for analysis and validation of their function. Robert Neil Gerard Miller Team Leader Graduated in Biological Sciences - Manchester Metropolitan University, UK (1990), Master in Plant Protection - University Of Bath, UK (1991) and PhD in Molecular Biology and Phytopathology - University of Reading, UK (1995). He is currently Associate Professor I at the University of Brasilia (Campus Darcy Ribeiro, Department of Cellular Biology), supervising the Graduate Programs in Molecular Biology, Phytopathology and Microbial Biology. He worked between 2014 and 2016 as Coordinator of the Graduate Program in Molecular Biology (CAPES concept 6). He works as editor for the journals Annals of Botany and Tropical Plant Pathology, he is coordinator of national and international projects, mainly in the following themes: functional genomics of plants and microorganisms; search for genes for resistance to biotic stress in plants; and characterization of phytopathogenic and mycotoxigenic fungi. Contact Robert Neil Gerard Miller Microbiology Laboratory: Plant-Prague Interaction, Bloco I-1-35/8, Institute of Biological Sciences, Department of Cell Biology, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Postal Code 70910-900, Brasília, DF, Brazil.
- AL07 - Leonardo Lima Pepino de Macedo | inctplantstress
Learn more about AL07, its main goals within the project and meet the laboratory's work team. AL 07 - Insects and Nematodes: Breeding and Bioassays Laboratory Activities - PlantStress Biotech INCT Organize, maintain and share an in vivo bank of the innovation assets obtained in the project shared by INCT members. Leonardo Lima Pepino de Macedo Team Leader Dr. Leonardo is undergraduated in Biological Sciences from the Federal University of Rio Grande do Norte (2005). He holds a master's degree in Biochemistry from the Federal University of Rio Grande do Norte (2007), and a doctorate's degree in Genomic Science and Biotechnology from the Catholic University of Brasília (2012). He has experience in Biochemistry and Molecular Biology, with expertise in the following topics: cloning and expression of proteins in heterologous systems; bioprospecting of proteins with entomotoxic activity (vicillins, lectins, proteinase inhibitors and Cry toxins) aiming at the control of dipterous, lepidopteran and coleopteran insects; and development of gene silencing strategies via interfering RNA (RNAi) for the control of insect pests. Contact Leonardo Lima Pepino de Macedo EMBRAPA Genetic Resources and Biotechnology W5 Norte Avenue (end) - P.O. Box 02372 - Postal Code 70770-917 - Brasília, DF - Brazil E-mail: leonardo.lima@embrapa.br Phone number:+55 61 3448-4705
- AL12 - Carmen Silvia Soares Pires | inctplantstress
Learn more about AL12, its main goals within the project and meet the laboratory's work team. AL 12 - Colaboration Lab Laboratory Activities - PlantStress Biotech INCT Organize, maintain and share an in vivo bank of the innovation assets obtained in the project shared by INCT members. Carmen S. Soares Pires Team Leader Dr. Carmen is undergraduated in Biology from the Federal University of Viçosa (1984), holds a master's degree in Entomology from the same university and a Ph.D in Biology fomr the Northern Arizona University (1998). She has been a researcher at Embrapa Genetic Resources and Biotechnology since 1989. She has experience in Ecology, with amphasis on Insect Ecology, working mainly o the following topics: population dynamics, plant-insect pest-natural enemies interaction, conservative biological control and pollination in agroecosystems. Since 2003, she has been involved in environmental risk analysis projects of stressors on non-target organisms (predatory insects, pollinators and non-target herbivores). Angharad MR Gatehouse Team Leader Prof Angharad Gatehouse has the Chair of Invertebrate Molecular Biology at Newcastle University and is Director of Expertise for BioEconomy. Her research focuses on the molecular and biochemical bases of plant-pest interactions with a view to developing novel strategies for crop protection. Her group was one of the first to produce insect-resistant transgenic crops. More recently her group has been using functional genomics to better understand the molecular responses of crops to biotic stress (pathogens and insect pests) for the development of molecular markers. In collaboration with Durham University, her group are actively involved in developing novel biopesticides including those based on RNAi. In addition to their efficacy, the group is also involved in the biosafety of these strategies, notably in terms of their potential effects on beneficial insects such as pollinators and natural enemies. She has published extensively in the field, including in discovery journals (Nature, PNAS). Contact Carmen S. Soares Pires Embrapa - Recursos Genéticos e Biotecnologia Parque Estação Biológica - PqEB, s/n, Brasília - DF carmen.pires@embrapa.br +55 61 3448-4433 Angharad MR Gatehouse School of Natural and Environmental Sciences - Newcastle University, Ridley Building. a.m.r.gatehouse@ncl.ac.uk +44 (0) 191 208 8838
- AL06 - Roberto Coiti Togawa | inctplantstress
Learn more about AL06, its main goals within the project and meet the laboratory's work team. AL 06 - Bioinformatics Laboratory Activities - PlantStress Biotech INCT Select vital genes/molecules for gall nematodes (Meloidogyne spp.) by analyzing their genome. Select potential genes involved in resistance from contrasting genotypes (peanuts soybean, rice, cotton and coffee). Integrate legume transcriptome data (beans, soybean and peanuts) submitted to water deficit, generated by mass sequencing (Illumina – HiSeq) in previous projects. Integrate monocotyledonous transcriptome data (rice, corn, wheat, Musa and Sorghum ) submitted to water deficit, generated by mass sequencing (Illumina – HiSeq) in previous projects. Integrate transcriptome data from resistant genotypes (beans, soybean, rice, coffee and peanuts) infected by nematodes, generated by mass sequencing (Illumina – HiSeq) in previous projects. Sequence on the Illumina platform a fraction of small RNAs, and their target mRNAs, and circular RNAs of plants (Arachis , Musa, soybean, pitangueira and cashew tree) subjected to biotic and/or abiotic stresses. Analyze sequencing data to check methylation status of gene promoters in the metabolic pathways of interest. Organize an in silico database cured and shared by INCT members. Organize, maintain and share an in vivo bank of the innovation assets obtained in the project shared by INCT members. Our Team Roberto Coiti Togawa Team Leader Graduated in Data Processing from the University of Brasília (1984) and doctorate from the University of Bedfordshire (United Kingdom) (2006). He worked for several years in the area of basic software support and systems development. He is currently a research analyst at Embrapa Genetic Resources and Biotechnology. Has experience in Computer Science, with emphasis on Programming Languages, working mainly on the following topics: Development of analysis tools for genomic sequences, Analysis of NGS sequences. Development of analysis tools for protein structures, structural bioinformatics, Development of prediction and analysis tools for Membrane Proteins. Priscila Grynberg She holds a degree in Biological Sciences from the Federal University of Minas Gerais - UFMG (2004), a master's degree in Parasitology from UFMG (2007) and a PhD in Bioinformatics from UFMG (2011). She is currently Researcher A at Embrapa Genetic Resources and Biotechnology - Cenargen. Operates in research projects of functional analysis of gene expression and differential proteomics data, large-scale sequencing of microRNAs and data mining. In 2007, she was awarded the Samuel Pessoa Medal at the 20th Brazilian Congress of Parasitology, when she won first place with a work that associated non-synonymous polymorphisms in the apical membrane protein 1 of Plasmodium vivax (PvAMA-1) with the platelet count in patients infected. She is part of the executive committee of the Brazilian Association of Bioinformatics and Computational Biology (AB3C). Contact Roberto Coiti Togawa EMBRAPA Genetic Resources and Biotechnology W5 Norte Avenue (end) - P.O. Box 02372 - Postal Code 70770-917 - Brasília, DF - Brazil E-mail: roberto.togawa@embrapa.br
- AL09 - Maria Fatima Grossi-de-Sa | inctplantstress
Learn more about AL09, its main goals within the project and meet the laboratory's work team. AL 09 - Plant Transformation - Cotton Laboratory Activities - PlantStress Biotech INCT Searching for vital insect-pest genes/molecules (Helicoverpa armigera and Spodoptera frugiperda ), using large-scale sequencing of their transcriptome and in vitro validation of gene expression. S election of new Cry molecules with high toxic activity against S. frugiperda and H. armigera . In silico identification of target molecules against insects and nematodes, through the design of specific chemical drugs for the development of new insecticides and nematicides. Analysis of the genome of Meloidogyne spp. for the selection of genes/molecules vital for gall formation. Selection of potential genes involved in the resistance of contrasting genotypes (peanuts, soybean, rice, cotton, and coffee). Integration of monocotyledonous transcriptome data (rice, corn, wheat, Musa spp., and Sorghum spp.) submitted to water deficit, generated by mass sequencing (Illumina – HiSeq) in previous projects. Integration of transcriptome data from drought-tolerant genotypes from Musa spp., Arachis spp., and cowpea submitted to water deficit combined with biotic stress (Meloidogyne spp. or Mycosphaerella ) in bioassays. Use of qRT-PCR for validation of key genes expression from metabolic pathways related to plant responses to combined stresses (biotic-biotic, biotic-biotic, abiotic-biotic). Search and validation of novel regulatory sequences (promoters) responsive to biotic and abiotic stresses, in crop plants, using transient and stable transformation (soybeans, cotton, and maize). Sequencing and selection of plant small RNAs, mRNAs, and circular RNAs (Arachis spp. , Musa spp. , soybean, pitangueira, cashew tree) submitted to biotic and/or abiotic stresses, using the Illumina platform. Validation of plant genes function, potentially involved in nematode resistance mechanisms, through molecules overexpression or gene silencing (RNAi) strategies. Validation of nematode genes function, potentially involved in the parasitism mechanisms, through RNAi strategies in model systems. Assessment and monitoring technology of biotech assets prospected for intellectual protection. Development of universal vectors containing all prospected and patented genetic elements by different institutions from the INCT Project. National and international protection of genes and regulatory sequences, via patents. Developing of GM soybean, cotton, and maize plants through overexpression of molecules and/or gene silencing strategies for drought tolerance and nematode resistance. Developing of GM soybean, cotton, and corn plants through overexpressing Bt toxin and dsRNAs sequences applied to H. armigera and S. frugiperda control. Functional validation of multiple pyramided genes involved in multiple traits, including nematodes and insect-pests (S. frugiperda or H. armigera ) resistance and drought tolerance in GM soybean and cotton plants. Phenotyping (greenhouse and/or field simulation) GM maize, soybean, and cotton plants for drought tolerance and/or resistance to S. frugiperda , H. armigera and Meloidogyne spp. Laboratory Description The Plant-Pest Molecular Interaction Laboratory (LIMPP) is coordinated by Dr. Maria Fatima Grossi-de-Sa. Research interests include both basic and applied sciences, focusing on plant-pest molecular interactions (pathogens and insect-pests) to develop novel crop protection strategies, especially for cotton and soybean. The LIMPP group’s research is known for its expertise in plant biotechnology using functional genomics, notably working on biotechnological aspects of RNA interfering (RNAi) mechanism applied to insect-pests and phytonematodes. Other current research interests include exploring new technologies for plant genetic transformation and genome editing, novel regulatory sequences for genetic engineering of crop plants for protection against insect-pests and phytonematodes, drought tolerance, and development of recombinant proteins. Research Lines Search for novel genes/molecules and peptides to be applied on the control of cotton and soybean insect-pests. Search for target genes/molecules of plant parasitic nematodes (Meloidogyne spp., Rotylenchus reniformis , Aphelenchoides spp.) to be applied in gene silencing approaches. Genetic engineering of crop plants using genome editing technologies and target genes/molecules of contrasting soybean genotypes (resistant/susceptible to Meloidogyne spp.). Search for genes/molecules and small RNAs in pest-resistance and drought-tolerant plant genotypes potentialy involved in the response to biotic and abiotic stresses (cross-stress). Validation of novel prospected biotech assets using overexpression of molecules or gene silencing approaches in plant models. Genetic engineering development of crop plants (cotton, soybean, sugarcane) using molecules/dsRNAs overexpression, gene silencing, and genome editing approaches for traits that include pest control, increase in biomass, and drought tolerance. Recent Publications ATELLA, A. L.; Grossi-de-Sa, M. F.; Alves-Ferreira, M. (2023). Cotton promoters for controlled gene expression. Electronic Journal of Biotechnology, v. 62, p. 10.1016/j.ejbt. https://doi.org/10.1016/j.ejbt.2022.12.002 BASSO, M. F.; Lourenço-Tessutti, I. T.; Moreira-Pinto, C. E.; Mendes, R. A. G.; Pereira, D. G.; Grandis, A.; Macedo, L. L. P.; Macedo, A. F.; Gomes, A. C. M. M.; Arraes, F. B. M.; Togawa, R. C.; do Carmo Costa, M. M.; Marcelino-Guimaraes, F. C.; Silva, M. C. M.; Floh, E. I. S.; Buckeridge, M. S., de Almeida Engler, J., Grossi-de-Sa, M. F. (2023) . Overexpression of the GmEXPA1 gene reduces plant susceptibility to Meloidogyne incognita . Plant Cell Report , v. 42, n. 1, p. 137-152. https://doi.org/10.1007/s00299-022-02941-3 FONSECA, F. C. A.; Antonino, J. D.; de Moura, S. M.; Rodrigues-Silva, P. L.; Macedo, L. L. P.; Gomes Júnior, J. E.; Lourenço-Tessuti, I. T.; Lucena, W. A.; Morgante, C. V.; Ribeiro, T. P.; Monnerat, R. G.; Rodrigues, M. A.; Cuccovia, I. M.; Mattar Silva, M. C.; Grossi-de-Sa, M. F. (2023) . In vivo and in silico comparison analyses of Cry toxin activities toward the sugarcane giant borer. Bulletin of Entomological Research, v. 8, p. 1-12. https://doi.org/10.1017/S000748532200061X MOREIRA, V. J. V.; Pinheiro D. H.; Lourenço-Tessuti, I. T.; Basso, M. F. ; Lisei-de-Sá, M. E.; Silva, M. C. M.; Danchin, E. G. J. ; Guimarães, P. M.; Grynberg, P.; Brasileiro, A. C. M.; Macedo, L. L. P.; Morgante, C. V.; Engler, J. A.; Grossi-de-Sá, M. F. (2023) . In planta RNAi targeting Meloidogyne incognita Minc16803 gene perturbs nematode parasitism and reduces plant susceptibility. Journal of Pest Science , v. 1, p. 1. https://doi.org/10.1007/s10340-023-01623-7 NIZOLLI, V. O.; Oliveira, V. F.; Maia, L. C.; Pegoraro, C.; Oliveira, A. C. (2023) . Genome editing in rice: New paths for an old crop. Perspectives In Agriculture, Veterinary Science, Nutrition And Natural Resources, v. 2023, p. 1-8. http://dx.doi.org/10.1079/cabireviews.2023.0008 PEREIRA, B. M.; Arraes, F.; Martins, A. C. Q.; Alves, N. S. F.; Melo, B. P.; Morgante, C. V.; Saraiva, M. A. P.; Grossi-de-Sá, M. F.; Guimarães, P. M.; Brasileiro, A. C. M. (2023). A novel soybean hairy root system for gene functional validation. PLoS One, v. 18, p. e0285504. https://doi.org/10.1371/journal.pone.0285504 TRENZ, T. S.; Turchetto-Zolet, A. C.; Margis, R.; Margis-Pinheiro, M.; Maraschin, F. S. (2023) . Functional analysis of alternative castor bean DGAT enzymes. Genetics and Molecular Biology (Online Version), v. 46, p . 1-12. https://doi.org/10.1590/1678-4685-GMB-2022-0097 VASQUEZ, D. D. N.; Pinheiro, D. H.; Teixeira, L. A.; Moreira-Pinto, C. E.; Macedo, L. L. P.; Salles-Filho, A. L. O.; Silva, M. C. M.; Lourenço-Tessutti, I. T.; Morgante, C. V.; Silva, L. P.; Grossi-de-Sa, M. F. (2023). Simultaneous silencing of juvenile hormone metabolism genes through RNAi interrupts metamorphosis in the cotton boll weebil. Frontiers in Molecular Biosciences, v. 10, p. 1073721. https://doi.org/10.3389/fmolb.2023.1073721 ARRAES, F. B. M.; Vasquez, D. D. N.; Tahir, M.; Pinheiro, D. H.; Faheem, M.; Freitas-Alves, N. S.; Moreira-Pinto, C. E.; Moreira, V. J. V.; Paes-de-Melo, B.; Lisei-de-Sá, M. E.; Morgante, C. V.; Mota, A. P. Z.; Lourenço-Tessutti, I. T.; Togawa, R. C.; Grynberg, P.; Fragoso, R. R.; de Almeida-Engler, J.; Larsen Martin, R.; Grossi-de-Sa, M. F. (2022) . Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. Plants , v. 11, p. 2744. https://doi.org/10.3390/plants11202744 . BASSO, M. F.; Lourenço-Tessutti, I. T.; Moreira-Pinto, C. E.; Mendes, R. A. G.; Pereira, D. G.; Grandis, A.; Macedo, L. L. P.; Macedo, A. F.; Gomes, A. C. M. M.; Arraes, F. B. M.; Togawa, R. C.; do Carmo Costa, M. M.; Marcelino-Guimarães, F. C.; Silva, M. C. M.; Floh, E. I. S.; Buckeridge, M. S.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022) . Overexpression of the GmEXPA1 gene reduces plant susceptibility to Meloidogyne incognita . Plant Cell Reports , v. 12, p. s00299-022-0294. https://doi.org/10.1007/s00299-022-02941-3 . BASSO, M. F.; Lourenço-Tessutti, I. T.; Moreira-Pinto, C. E.; Mendes, R. A. G.; Paes-de-Melo, B.; Das Neves, M. R.; Macedo, A. F.; Figueiredo, V.; Grandis, A.; Macedo, L. L. P.; Arraes, F. B. M.; do Carmo-Costa, M. M.; Togawa, R. C.; Enrich-Prast, A.; Marcelino-Guimarães, F. C.; Gomes, A. C. M. M.; Silva, M. C. M.; Floh, E. I. S.; Buckeridge, M. S.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022) . Overexpression of a soybean Globin (GmGlb1-1) gene reduces plant susceptibility to Meloidogyne incognita . Planta , v. 256, p. 83. https://doi.org/10.1007/s00425-022-03992-2 . DE MOURA, S. M.; Babilonia, K.; de Macedo, L. L. P.; Grossi-de-Sa, M. F.; Shan, L.; He, P.; Alves-Ferreira, M. (2022) . The oral secretion from Cotton Boll Weevil ( Anthonomus grandis ) induces defense responses in cotton ( Gossypium spp) and Arabidopsis thaliana . Current Plant Biology , v. 31, p. 100250. https://doi.org/10.1016/j.cpb.2022.100250 . DE MOURA, S. M.; Freitas, E. O.; Ribeiro, T. P.; Paes-de-Melo, B.; Arraes, F. B. M.; Macedo, L. L. P.; Paixão, J. F. R.; Lourenço-Tessutti, I. T.; Artico, S.; da Cunha Valença, D.; Silva, M. C. M.; de Oliveira, A. C.; Alves-Ferreira, M.; Grossi-de-Sa, M. F. (2022) . Discovery and functional characterization of novel cotton promoters with potential application to pest control. Plant Cell Reports , v. 41, p. 10.1007/s00299. https://doi.org/10.1007/s00299-022-02880-z. DOS SANTOS, C.; Carmo, L. S. T.; Távora, F. T. P. K.; Lima, R. F. C.; da Nobrega Mendes, P.; Labuto, L. B. D.; de Sá M. E. L.; Grossi-de-Sa, M. F.; Mehta, A. (2022) . Overexpression of cotton genes GhDIR4 and GhPRXIIB in Arabidopsis thaliana improves plant resistance to root-knot nematode ( Meloidogyne incognita ) infection. 3 Biotech , v. 12, p. 211. https://doi.org/10.1007/s13205-022-03282-4 . FRAGOSO, R. R.; Arraes, F. B. M.; Lourenço-Tessutti, I. T.; Miranda, V. J.; Basso, M. F.; Ferreira, A. V. J.; Viana, A. A. B.; Lins, C. B. J.; Lins, P. C.; Moura, S. M.; Batista, J. A. N.; Silva, M. C. M.; Engler, G.; Morgante, C. V.; Lisei-de-Sá, M. E.; Vasques, R. M.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022) . Functional characterization of the pUceS8.3 promoter and its potential use for ectopic gene overexpression. Planta , v. 256, p. 69, 2022. https://doi.org/10.1007/s00425-022-03980-6 . KARALIJA, E.; Vergata, C.; Basso, M. F.; Negussu, M.; Zaccai, M.; Grossi-de-Sa, M. F.; Martinelli, F. (2022) . Chickpeas? Tolerance of Drought and Heat: Current Knowledge and Next Steps. Agronomy-Basel , v. 12, p. 2248. https://doi.org/10.3390/agronomy12102248 . MENDES, R. A. G.; Basso, M. F.; Amora, D. X.; Silva, A. P.; Paes-de-Melo, B.; Togawa, R. C.; Albuquerque, E. V. S.; Lisei-de-Sá, M. E.; Macedo, L. L. P.; Lourenço-Tessutti, I. T.; Grossi-de-Sa, M. F. (2022) . In planta RNAi approach targeting three M. incognita effector genes disturbed the process of infection and reduced plant susceptibility. Experimental Parasitology , v. 238, p. 108246. https://doi.org/10.1016/j.exppara.2022.108246 . MOREIRA, V. J. V.; Lourenço-Tessutti, I. T.; Basso, M. F.; Lisei-de-Sá, M. E.; Morgante, C. V.; Paes-de-Melo, B.; Arraes, F. B. M.; Martins-de-Sa, D.; Silva, M. C. M.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022) . Minc03328 effector gene downregulation severely affects Meloidogyne incognita parasitismo in transgenic Arabidopsis thaliana . Planta , v. 255, p. 44-59. https://doi.org/10.1007/s00425-022-03823-4 . REIS, M. A.; Noriega, D. D.; dos Santos Alves, G.; Coelho, R. R.; Grossi-de-Sa, M. F.; Antonino, J. D. (2022) . Why is oral-induced RNAi inefficient in Diatraea saccharalis ? A possible role for DsREase and other nucleases. Pesticide Biochemistry and Physiology , v. 186, p. 105166. https://doi.org/10.1016/j.pestbp.2022.105166 . RIBEIRO, D. G.; Mota, A. P. Z.; Santos, I. R.; Arraes, F. B. M.; Grunberg, P.; Fontes, W.; de Souza Castro, M.; de Sousa, M. V.; Lisei-de-Sá, M. E.; Grossi-de-Sa, M. F.; Franco, O. L.; Mehta, A. (2022) . NBS-LRR-WRKY genes and protease inhibitors (PIs) seem essential for cowpea resistance to root-knot nematode. Journal of Proeomics , v. 261, p. 104575. https://doi.org/10.1016/j.jprot.2022.104575 . RIBEIRO, T. P.; Vasquez, D. D. N.; Macedo, L. L. P.; Lourenço-Tessutti, I. T.; Valença, D. C.; Oliveira-Neto, O. B.; Paes-de-Melo, B.; Rodrigues-Silva, P. L.; Firmino, A. A. P.; Basso, M. F.; Lins, C. B. J.; Neves, M. R.; Moura, S. M.; Tripode, B. M. D.; Miranda, J. E.; Silva, M. C. M.; Grossi-de-Sa, M. F. (2022) . Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW (Anthonomus grandis ). International Journal of Molecular Sciences , v. 23, p. 13713. https://doi.org/10.3390/ijms232213713 . TOUZDJIAN PINHEIRO KOHLRAUSCH TÁVORA, F.; de Assis dos Santos Diniz, F.; de Moraes Rêgo-Machado, C.; Chagas Freitas, N.; Barbosa Monteiro Arraes, F.; Chumbinho de Andrade, E.; Furtado, L. L.; Osiro, K. O.; Lima de Sousa, N.; Cardoso, T. B.; Márcia Mertz Henning, L.; Abrão de Oliveira Molinari, P.; Feingold, S. E.; Hunter, W. B.; Grossi-de-Sa, M. F.; Kobayashi, A. K.; Lima Nepomuceno, A.; Santiago, T. R.; Correa Molinari, H. B. (2022) . CRISPR/Cas- and Topical RNAi-Based Technologies for Crop Management and Improvement: Reviewing the Risk Assessment and Challenges Towards a More Sustainable Agriculture. Frontiers in Bioengineering and Biotechnology , v. 10, p. 10:913728. https://doi.org/10.3389/fbioe.2022.913728 . ARAUJO SOUSA, B.; Nascimento Silva, O.; Farias Porto, W.; Lima Rocha, T.; Paulino Silva, L.; Ferreira Leal, A.P.; Buccini, D.F.; Oluwagbamigbe Fajemiroye, J.; de Araujo Caldas, R.; Franco, O.L.; Grossi-De-Sá, M.F.; de La Fuente Nunez, C.; Moreno, S.E. (2021) . Identification of the active principle conferring anti inflammatory and antinociceptive properties in bamboo plant. Molecules , v. 26, p. 3054. https://doi.org/10.3390/molecules2610305 . ARRAES, F.B.M.; Martins-de-Sa, D.; Noriega Vasquez, D.D.; Melo, B.P.; Faheem, M.; de Macedo, L.L.P.; Morgante, C.V.; Barbosa, J.A.R.G.; Togawa, R.O.; Moreira, V.J.P.; Danchin, E.G.J.; Grossi-de-Sa, M.F. (2021) . Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biology , v. 18, p. 1653-1681. https://doi.org/10.1080/15476286.2020.1861816 . BASSO, M.F.; Costa, J.A.; Ribeiro, T.P.; Arraes, F.B.M.; Lourenço-Tessutti, I.T.; Macedo, A.F.; Neves, M.R.; Nardeli, S.M.; Arge, L.W.; Perez, C.E.A.; Silva, P.L.R; De Macedo, L.L.P.; Lisei-de-Sa, M.E.; Amorim, R.M.A.; Pinto, E.R.C.; Silva, M.C.M.; Morgante, C.V.; Floh, E.I.S.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2021) . Overexpression of the CaHB12 transcription factor in cotton ( Gossypium hirsutum ) improves drought tolerance. Plant Physiology and Biochemistry , v. 165, p. 80-93. https://doi.org/10.1016/j.plaphy.2021.05.009 . CABRAL, D.; Forero Ballesteros, H.; de Melo, B.P.; Lourenço-Tessutti, I.T.; Smões de Siqueira, K.M.; Obicci, L.; Grossi-de-Sa, M.F.; Hemerly, A.S.; de Almeida Engler, J. (2021) . The armadillo BTB protein ABAP1 is a crucial player in DNA replication and transcription of nematode-induced galls. Frontiers in Plant Science , v. 12, p. 636663. https://doi.org/10.3389/fpls.2021.636663. GODINHO MENDES, R.A.; Basso, M.F.; Fernandes de Araújo, J.; Paes De Melo, B.; Lima, R.N.; Ribeiro, T.P.; da Silva Mattos, V.; Saliba Albuquerque, E.V.; Grossi-De-Sa, M.; Dessaune Tameirao, S.N.; da Rocha Fragoso, R.; Mattar da Silva, M.C.; Vignols, F.; Fernandez, D.; Grossi-De-Sa, M.F. (2021) . Minc00344 and Mj-NULG1a effectors interact with GmHub10 protein to promote the soybean parasitism by Meloidogyne incognita and M. javanica . Experimental Parasitology , v. 229, p. 108153. https://doi.org/10.1016/j.exppara.2021.108153 . LISEI-DE-SÁ, M.E.; Rodrigues-Silva, P.L.; Morgante, C.V.; de Melo, B.P.; Lourenço-Tessutti, I.T.; Arraes, F.B.M.; Sousa, J.P.A.; Galbieri, R.; Amorim, R.M.S.; de Lins, C.B.J.; Macedo, L.L.P.; Moreira, V.J.; Ferreira, G.F.; Ribeiro, T.P.; Fragoso, R.R.; Silva, M.C.M.; de Almeida-Engler, J.; Grossi-de-Sa, M.F. (2021) . Pyramiding dsRNAs increases phytonematode tolerance in cotton plants. Planta , v. 254, p. 121. https://doi.org/10.1007/s00425-021-03776-0 . MENDES, R. A. G.; Basso, M. F.; Paes-de-Melo, B.; Ribeiro, T. P.; Lima, R. N.; Araujo, J. F.; Grossi-de-Sa, M. F.; Mattos, V. S.; Togawa, R. C.; Albuquerque, E. V. S.; Lisei-de-Sá, M. E.; Silva, M. C. M.; Macedo, L. L. P.; Fragoso, R. R.; Fernandez, D.; Vignols, F.; Grossi-de-Sa, M. F. (2021) . The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita . Physiological and Molecular Plant Pathology , v. 114, p. 101630. https://doi.org/10.1016/j.pmpp.2021.101630 . MENDES, R.A.G.; Basso, M.F.; Paes-de-Melo, B.; Ribeiro, T.P.; Lima, R.N.; Araujo, J.F.; Grossi-de-Sa, M.; Mattos, V.S.; Togawa, R.C.; Albuquerque, E.V.S.; Lisei-de-Sa, M.E.; Silva, M.C.M.; Macedo, L.L.P.; Fragoso, R.R.; Fernandez, D.; Vignols, F.; Grossi-de-Sa, M.F. (2021) . The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita . Physiological and Molecular Plant Pathology , v. 114, p. 101630. https://doi.org/10.1016/j.pmpp.2021.101630 . MOREIRA-PINTO, C.E.; Ramos Coelho, R.; Borges Leite, A.G.; Amaral Silveira, D.; Aguiar Souza, D.; Biaggioni Lopes, R.; Macedo, L.L.P.; Mattar Silva, M.C.; Ribeiro, T.P.; Morgante, C.V.; Antonino, J.D.; Grossi-de-Sa, M.F. (2021) . Increasing susceptibility to through-induced knockdown: a perspective to combine biocontrol and biotechnology. Pest Management Science , v. 77, p. ps.6430. https://doi.org/10.1002/ps.6430. MOREIRA-PINTO, C.E.; Coelho, R.R.; Leite, A.G.B.; Silveira, D.A.; Souza, D.A.; Lopes, R.B.; Macedo, L.L.P.; Silva, M.C.M.; Ribeiro, T.P.; Antonino, J.D.; Grossi-de-Sa, M.F. (2021) . Increasing Anthonomus grandis susceptibility to Metarhizium anisopliae through RNAi-induced AgraRelish knockdown: a perspective to combine biocontrol and biotechnology. Pest Management Science , v. 77, p. 4054-4063. https://doi.org/10.1002/ps.6430 . MOTA, A.P.Z.; Brasileiro, A.C.M.; Vidigal, B.; Oliveira, T.N.; da Cunha Quintana Martins, A.; Saraiva, M.A.P.; de Araújo, A.C.G.; Togawa, R.C.; Grossi-de-Sá, M.F.; Guimaraes, P.M. (2021) . Defining the combined stress response in wild Arachis. Scientific Reports , v. 11, p. 11097. https://doi.org/10.1038/s41598-021-90607-7 . PAES DE MELO, B.; Lourenço-Tessutti, I.T.; Fraga, O.T.; Pinheiro, L.B.; de Jesus Lins, C.B.; Morgante, C.V.; Engler, J.A.; Reis, P.A.B.; Grossi-De-Sá, M.F.; Fontes, E.P.B. (2021) . Contrasting roles of GmNAC065 and GmNAC085 in natural senescence, plant development, multiple stresses and cell death responses. Scientific Reports , v. 11, p. 11178. https://doi.org/10.1038/s41598-021-90767-6. PAES DE MELO, B.; Moura, S.M.; Morgante, C.V.; Pinheiro, D.H.; Alves, N.S.F.; Rodrigues-Silva, P.L.; Lourenço-Tessutti, I.T.; Andrade, R.V.; Fragoso, R.R.; Grossi-de-Sa, M.F. (2021) . Regulated promoters applied to plant engineering: an insight over promising soybean promoters under biotic stress and their cis-elements. Biotechnology Research and Innovation , v. 5, p. e2021005. http://dx.doi.org/10.4322/biori.202105 . RIBEIRO, T.P.; Lourenço-Tessutti, I.T.; De Melo, B.P.; Morgante, C.V.; Filho, A.S.; Lins, C.B.J.; Ferreira, G.F.; Mello, G.N.; Macedo, L.L.P.; Lucena, W.A.; Silva, M.C.M.; Oliveira-Neto, O.B.; Grossi-de-Sa, M.F. (2021) . Improved cotton transformation protocol mediated by Agrobacterium and biolistic combined-methods. Planta , v. 254, p. 20. https://doi.org/10.1007/s00425-021-03666-5 . RODRIGUES-SILVA, P. L.; Rodrigues, M. T.; Figueiredo, L. H. M.; Grossi-de-Sa, M. F. (2021) . Tendências quanto ao conhecimento e às aplicações biotecnológicas do Psidium guineense evidenciadas pelo monitoramento tecnológico. Cadernos de Ciência & Tecnologia , v. 38, p. e26704. http://dx.doi.org/10.35977/0104-1096.cct2021.v38.26704 . BASSO, M.F.; Arraes, F.B.M.; Grossi-de-Sa, M.; Vaz-Moreira, V.J.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2020) . Insights into genetic and molecular elements for transgenic crop development. Frontiers in Plant Science , v. 11, p. 509. https://doi.org/10.3389/fpls.2020.00509 . BASSO, M.F.; Lourenço-Tessutti, I.T.; Busanello, C.; Pinto, C.E.M.; Oliveira-Freitas, E.; Ribeiro, T.P.; Almeida-Engler, J.; Oliveira, A.C.; Morgante, C.V.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2020) . Insights obtained using different modules of the cotton uceA1.7 promoter. Planta , v. 251, p. 56. https://doi.org/10.1007/s00425-020-03348-8 . BASSO, M.F.; Lourenço-Tessutti, I.T.; Mendes, R.A.G.; Pinto, C.E.M.; Bournaud, C.; Gillet, F.X.; Togawa, R.C.; Macedo, L.L.P.; Almeida-Engler, J.; Grossi-de-Sa, M.F. (2020) . MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita . Scientific Reports , v. 10, p. 6991. https://doi.org/10.1038/s41598-020-63968-8 . BEVITORI, R.; Sircar, S.; Mello, R.N.; Togawa, R.C.; Cortes, M.V.C.B.; Oliveira, T.S.; Grossi-de-Sa, M.F.; Parekh, N. (2020) . Identification of co-expression gene networks controlling rice blast disease during an incompatible reaction. Genetics Molecular Research , v. 19, p. gmr18579. https://doi.org/10.4238/gmr18579 . CABRAL, D.N.; Banora, M.Y.; Antonino, J.D.; Rodiuc, N.; Vieira, P.; Coelho, R.R.; Chevalier, C.; Eekhout, T.; Engler G.; De-Veylder, L.; Grossi-de-Sa, M.F.; Almeida-Engler, J. (2020) . The plant WEE1 kinase is involved in checkpoint control activation in nematode-induced galls. New Phytologist , v. 225(1), p. 430-447. https://doi.org/10.1111/nph.16185 . CAMPOS, M.L.; Prado, G.S.; Santos, V.O.; Nascimento, L.C.; Dohms, S.M.; Cunha, N.B.; Ramada, M.H.S.; Grossi-de-Sa, M.F.; Dias, S.C. (2020) . Mosses: versatile plants for biotechnological applications. Biotechnology Advances , v. 6, p. 107533. https://doi.org/10.1016/j.biotechadv.2020.107533 . FIRMINO, A.A.P.; Pinheiro, D.H.; Pinto, C.E.M.; Antonino, J.D.; Macedo, L.L.P.; Martins-de-Sa, D.; Arraes, F.B.M.; Coelho, R.R.; Fonseca, F.C.A.; Silva, M.C.M.; Almeida-Engler, J.; Silva, M.S.; Lourenço-Tessutti, I.T.; Terra, W.R.; Grossi-de-Sa, M.F. (2020) . RNAi-mediated suppression of Laccase2 impairs cuticle tanning and molting in the cotton boll weevil (Anthonomus grandis ). Frontiers in Physiology , v. 11, p. 591569. https://doi.org/10.3389/fphys.2020.591569 . GRYNBERG, P.; Togawa, R.C.; Freitas, L.D.; Antonino, J.D.; Rancurel, C.; Costa, M.M.C.; Grossi-de-Sa, M.F.; Miller, R.N.G.; Brasileiro, A.C.M.; Guimaraes, P.M.; Danchin, E.G.J. (2020) . Comparative genomics reveals novel target genes towards specific control of plant-parasitic nematodes. Genes , v. 11, p. 1347. https://doi.org/10.3390/genes11111347 . IBARRA, L.N.; Alves, A.E.O.A.; Antonino, J.D.; Prado, G.S.; Pinto, C.E.M.; Soccol, C.R.; Vasconcelos, E.A.R.; Grossi-de-Sa, M.F. (2020) . Enzymatic activity of a recombinant β-1,4-endoglucanase from the cotton boll weevil (Anthonomus grandis ) aiming second generation ethanol production. Scientific Reports , v. 10(1), p. 5367. https://doi.org/10.1038/s41598-019-56070-1 . MOTA, A.P.Z.; Fernandez, D.; Arraes, F.B.M.; Petitot, A.S.; Paes-Melo, B.; Lisei-de-Sa, M.E.; Guimaraes, P.M.; Brasileiro, A.C.M.; Albuquerque, E.V.S.; Danchin, E.G.J.; Grossi-de-Sa, M.F. (2020) . Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics. Molecular Genetics and Genomics , v. 295, p. 1063-1078. https://doi.org/10.1007/s00438-020-01677-7 . MOURA, S.M.; Rossi, M.L.; Artico, S.; Grossi-de-Sa, M.F.; Martinelli, A.P.; Alves-Ferreira, M. (2020) . Characterization of floral morphoanatomy and identification of marker genes preferentially expressed during specific stages of cotton flower development. Planta , v. 252(4), p. 71. https://doi.org/10.1007/s00425-020-03477-0 . NORIEGA-VASQUEZ, D.D.; Arraes, F.B.M.; Antonino, J.D.; Macedo, L.L.P.; Fonseca, F.C.A.; Togawa, R.C.; Grynberg, P.; Silva, M.C.M.; Negrisoli, A.S.; Grossi-de-Sa, M.F. (2020) . Transcriptome analysis and knockdown of the juvenile hormone esterase gene reveal abnormal feeding behavior in the sugarcane giant borer. Frontiers in Physiology , v. 11, p. 588450. https://doi.org/10.3389/fphys.2020.588450 . NORIEGA-VASQUEZ, D.D.; Arraes, F.B.M.; Antonino, J.D.; Macedo, L.L.P.; Fonseca, F.C.A.; Togawa, R.C.; Grynberg, P.; Silva, M.C.M.; Negrisoli, A.S.; Morgante, C.V.; Grossi-de-Sa, M.F. (2020) . Comparative gut transcriptome analysis of Diatraea saccharalis in response to the dietary source. PLoS One , v. 15(8), p. e0235575. https://doi.org/10.1371/journal.pone.0235575 . PAES-MELO, B.; Lourenço-Tessutti, I.T.; Morgante, C.V.; Santos, N.C.; Pinheiro, L.B.; Jesus-Lins, C.B.; Silva, M.C.M.; Macedo, L.L.P.; Fontes, E.P.B.; Grossi-de-Sa, M.F. (2020) . Soybean embryonic axis transformation: combining biolistic and Agrobacterium -mediated protocols to overcome typical complications of in vitro plant regeneration. Frontiers in Plant Science , v. 11, p. 1228. https://doi.org/10.3389/fpls.2020.01228 . PAES-MELO, B.; Lourenço-Tessutti, I.T.; Paixao, J.F.R.; Noriega-Vasquez, D.D.; Silva, M.C.M.; Almeida-Engler, J.; Fontes, E.P.B.; Grossi-de-Sa, M.F. (2020) . Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit. Scientific Reports , v. 10(1), p. 16231. https://doi.org/10.1038/s41598-020-72464-y . RIBEIRO, T.P.; Basso, M.F.; Carvalho, M.H.; Macedo, L.L.P.; Silva, D.M.L.S.; Lourenço-Tessutti, I.T.; Oliveira-Neto, O.B.; Romano, E.; Lucena, W.A.; Silva, M.C.M.; Tripode, B.M.D.; Abreu-Jardin, T.P.F.; Miranda, J.E.; Alves-Ferreira, M.; Morgante, C.V.; Grossi-de-Sa, M.F. (2020) . Stability and tissue-specific Cry10Aa overexpression improves cotton resistance to the cotton boll weevil. Biotechnology Research & Innovation , v. 3, p. 15. https://doi.org/10.1016/j.biori.2019.12.003 . SANTOS, C.; Nogueira, F.C.S.; Domont, G.B.; Fontes, W.; Prado, G.S.; Habibi, P.; Santos, V.O.; Oliveira-Neto, O.B.; Grossi-de-Sa, M.F.; Jorrín-Novo, J.V.; Franco, O.L.; Mehta, A. (2020) . Proteomic analysis and functional validation of a Brassica oleracea endochitinase involved in resistance to Xanthomonas campestres . Frontiers in Plant Science , v. 11, p. 201. https://doi.org/10.3389/fpls.2019.00414 . Our Team Maria Fatima Grossi-de-Sa Team Leader Maria Fatima Grossi-de-Sa holds a bachelor's degree in Biological Sciences - biomedicine modality from the University of Brasilia (1979), a master's degree in Biological Sciences (Molecular Biology) from the University of Brasilia (1982), a doctorate (Doctorat Et Sciences) in Molecular Biology from the Université Paris VII-France (1987), and was a postdoctoral fellow at the Plant Genetic System-Ghent-Belgium (1988) and at the University of California in San Diego (1995-1996). She is the Lead Researcher at EMBRAPA Genetic Resources and Biotechnology (since 1989) and professor at the Catholic University of Brasília (since 2004). She is a CNPq productivity fellow (level 1A), member of CAPES International Advisory Committee (since 2007), full member (Agrarian Sciences) of the Brazilian Academy of Sciences (elected in 2011) and a member of the World Academy of Science -TWAS (elected in 2014). Among other awards and honors, she notably received the Scopus Award 2010 (Elsevier / CAPES) and the medal of the National Order of Scientific Merit (2018). She held the position of coordinator at the Biotechnology area and alternate member of CTC-ES at CAPES (2007-2014), and the presidency of the Brazilian Society of Biotechnology - SBBiotec (2008-2013 and 2016-current). She has experience in the field of Plant Genetics and Biotechnology, with an emphasis on Genetic Engineering and Plant Molecular Biology. The primary focus of her research is on the development of biotechnological products, using different strategies, including genome editing, aiming to increase tolerance and resistance to biotic and abiotic stress in plants. Morevoer, biotechnological tools are applied for the development of biopharmaceuticals. Her main research fields include: plant defense proteins, insecticidal proteins, plant-pest molecular interaction, and biotechnological assets applied to agribusiness. Carolina Vianna Morgante She is undergraduated in Biological Sciences at University of Sao Paulo - Biosciences Institute (1999). Carolina Morgante holds a master's and doctorate's degrees in Agronomy (Genetics and Plant Breeding) from the University of São Paulo (2003 and 2008, respectively). She is currently a researcher at Embrapa Semiárido and has experience in Genetics, focusing on Plant Genetics and Molecular. Diana Isolda Clotilde Fernandez She is currently a permanent Senior researcher at the French Research Institute for Development - Institut de Recherche pour le Développement (IRD, France) and remained until November 2020 at Embrapa-Cenargen. She has experience in Biochemistry, with emphasis on Molecular Biology, working on the following subjects: phytopathology, plant-pathogen interactions, plant immunity, nematodes, rust, rice, Coffea arabica , Hemileia vastatrix , Meloidogyne spp. Isabela Tristan Lourenço Tessutti Isabela is undergraduated in Biological Sciences from the University of Brasilia (2006), and holds a master's and a doctorate's degree in Molecular Biology from the same University (2008 and 2014, respectively). She was a post-doctoral fellow (2020) at the Institut National de Recherche pour l'Agriculture , l'Alimentation et l'Envrionment (INRA - Sophia Antipolis/France). Recently, she works at the Plant-Pest Interaction Laboratory at Embrapa Genetic Resources and Biotechnology, coordinated by Dr. Maria Fatima Gross-de-Sa. Her main research fields are: plant-pest interaction, plant resistance to biotic stress (nematodes and insects), and tolerance to abiotic stress (drought). She has expertise in: functional genomics for phytonematodes, insects, plants and bacteria; plant genetic transformation; gene (RNAi) silencing; heterologus expression of proteins using bacterial cells; functional characterization of plant promoters; spacial and temporal determinarion of gene expression using real-time PCR; genome editing using CRISPR methodology for biomass increase, drought tolerance and pest resistance. Leonardo Lima Pepino de Macedo Leonardo is undergraduated in Biological Sciences from the Federal University of Rio Grande do Norte (2005). He holds a master degree in Biochemistry from the same University (2007) and a doctorate's degree in Genomic Sciences and Biotechnology from the Catholic University of Brasília (2012). He has experience in Biochemistry and Molecular Biology, with expertise in the following areas: cloning and expression of proteins in heterologous systems; bioprospecting proteins with entomotoxic activity (vicillins, lectins, proteinase inhibitors and Cry toxins) aiming at the control of dipterous, lepidopteran and coleopteran insects; development of gene silencing strategies via RNAi for the control of insect pests. Maria Eugenia Lisei de Sa Maria Eugenia is undergraduated in Biological Sciences from Faculdades Metodistas Integradas Isabela Hendrix (1981), Master in Agronomy (Phytotechnics) from the Universidade Federal do Ceará (1984), PhD in Genetics and Biochemistry from the Universidade Federal de Uberlândia (2004) and post-doctorate fellow in Biotechnology at the Institute de Recherche pour le Développement-França (2013). She is Researcher (II) at the Minas Gerais Agricultural Research Corporation (EPAMIG) and currently works as a collaborative researcher at Embrapa Genetic Resources and Biotechnology -Cenargen. He has experience in the field of soybean breeding, with an emphasis on the development of soybean cultivars with characteristics suitable for human consumption. Her expertise lies on plant defense proteins (proteinase inhibitors, alpha-amylase inhibitors, lectins, defensins, osmotins); plant-pest molecular interaction; development of genetically modified plants for resistance to biotic stress (insects and nematodes) and tolerance to abiotic stress. Maria Cristina Mattar da Silva Maria Cristina is undergraduated in Biological Sciences from the Universidade Estadual Paulista Júlio de Mesquita Filho (1984) and from Universidade de Brasília (1987). She holds a master's degree in Biological Sciences (Molecular Biology) from the Universidade de Brasília (1992) and a doctorate's degree in Biological Sciences (Molecular Biology) from University of Brasília (2002). She is a Researcher at Embrapa Genetic Resources and Biotechnology since 1989. She is expert in plant molecular biology, working in the field of plant biotechnology for biotic and abiotic stress. The main focus of her researches are: evolution of molecules in vitro for selection of variants with improved activity; molecular studies of plant-pest interaction for insect resistance. Currently, she is a Member of the Brazilian Society of Biotechnology. FIND OUT MORE ABOUT OUR TEAM Contact Maria Fatima Grossi de Sá EMBRAPA Genetic Resources and Biotechnology W5 Norte Avenue (end) - P.O. Box 02372 - Postal Code 70770-917 - Brasília, DF - Brazil E-mail: fatima.grossi@embrapa.br Phone number: +55 61 3448-4705
- About us | inctplantstress
The "INCT PlantStress Biotech" project therefore aims to integrate several Brazilian research groups and international partners with expertise in plant breeding and biotechnology. The primary goal of the network is to generate biotech assets applied to crop plants. About us In the present scenario, important crops naturally present low levels of drought tolerance and resistance to insect pests and nematodes. In this context, the complex mechanisms of response associated with environmental stresses (abiotic and biotic), and the small number of characterized and introgressed genes have been reported. Therefore, the search for new genes and molecules involved in tolerance or resistance to insect pests or drought stress is imperative. Hence, “INCT - Biotechnology applied to plant stresses” proposes the integration of several Brazilian research groups and international partners experts in plant physiology, transcriptomics, epigenetics, proteomics, bioinformatics, and functional genomics. The integrated research group aims to develop a multidisciplinary and multi-institutional network with national and international excellence to generate biotechnological assets applied to maize, soybean, and cotton. This project includes prospection, isolation, characterization, and functional validation of genes and molecules involved in resistance against pests (Meloidogyne spp., Helicoverpa armigera, and Spodoptera frugiperda) and water deficit tolerance. The generated assets will be applied in the development of biotechnology products, such as bio-insecticides and genetically modified soybean, maize and cotton plants. Furthermore, INCT research groups will not spare efforts to promote the qualification of students and professionals from different research areas, including biotechnology, genomics, and bioinformatics, either in Brazil or abroad. In the future, the INCT network can be used not only for the generation of biotechnological assets applied to drought stress and pests’ control in soybean, cotton and maize but also to other agronomic important traits (seed and fruit quality, nutrition value increase, and others) and important crops for the Brazilian agribusiness. See Publications Organizational Structure
- AL10 - Newton Carneiro | inctplantstress
Learn more about AL10, its main goals within the project and meet the laboratory's work team. AL 10 - Plant Transformation - Corn Laboratory Activities - PlantStress Biotech INCT Integrate data from monocotyledon transcriptomes (rice, corn, wheat, Musa and Sorghum ) submitted to water deficit, generated by mass sequencing (Illumina - HiSeq) in previous projects. Validate promoters by transient transformation by biolistics or Agrobacterium rhyzogenes in target plants for in vivo testing of promoters (soybean, cotton and corn). Validate promoters by stable transformation in target plants for in vivo testing of promoters identified as promising in previous tests (soybean, cotton and corn). Organize, maintain and share an in vivo bank of the innovation assets obtained in the project shared by INCT members. Generate GM soybean, GM cotton and GM corn via strategies of overexpression or silencing of plant genes and evaluate the phenotype obtained regarding drought tolerance. Generate GM soybean, GM cotton and GM corn expressing sequences for silencing of insect genes and evaluate the phenotype obtained regarding the control of Helicoverpa armigera and Spodoptera frugiperda . Generate GM soybean, GM cotton and GM corn via toxin overexpression strategies and evaluate the phenotype obtained regarding the control of H. armigera and S. frugiperda . Phenotyping (greenhouse or field) corn, soybean and cotton populations, resulting from crossing with GM events to obtain proof of concept of drought tolerance and/or resistance to S. frugiperda , H. armigera or Meloidogyne spp. Newton Carneiro Team Leader Bachelor degree in Biology at Pontifícia Universidade Católica de Minas Gerais (1986), Master's in Plant breeding at Universidade Federal de Viçosa (1990) and Ph.D. in Plant Sciences at University of Arizona (1998). In 2015 participated as Visiting Scientist at University of Nebraska with RNAi. Experience in Genetics, focusing on Molecular Genetics and of Microorganisms, acting on the following subjects: biotic and abiotic stresses in maize and sorghum, genomic and transgenic. Contact Newton Portilho Carneiro EMBRAPA Milho e Sorgo E-mail: newton.carneiro@embrapa.br
- AL14 - Rafael Galbieri | inctplantstress
Learn more about AL14, its main goals within the project and meet the laboratory's work team. AL 14 - Field Phenotyping - Private Sector Laboratory Activities - PlantStress Biotech INCT Organize, maintain and share an in vivo bank of the innovation assets obtained in the project shared by INCT members. Phenotyping (greenhouse or field) corn, soybean and cotton population resulting from crossing with GM events to obtain proof of concept of drought tolerance and/or resistance to Spodoptera frugiperda , Helicoverpa armigera or Meloidogyne spp. Rafael Galbieri Team Leader Dr. Rafael is an agronomist graduated at the Federal University of São Carlos (UFSCar). He holds a master's degree in Agriculture from the Agronomic Institute of Campinas (IAC) and has a PhD degree in Tropical Agriculture from the Federal University of Mato Grosso (UFMT). Since 2007, he is a researcher (phytopathologist) at Instituto Mato-Grossense do Algodão (IMA). In 2008, he became the coordinator of the Department of Phytopathology/Nematology at IMA. His research focuses on the management of diseases and nematodes in cotton, soybean and castor bean crops, working in different areas, such as gentic, biological, chemical and cultural control of pathogens. Contact Rafael Galbieri Instituto Mato-grossense do Algodão. Rodovia BR070 km 266 Zona rural 78850-000 - Primavera do Leste, MT - Brazil - Caixa-postal: 149 Phone: (66) 34973301
- AL04 - Joaquim Albenisio G. da Silveira | inctplantstress
Learn more about AL04, its main goals within the project and meet the laboratory's work team. AL 04 - Molecular Physiology Laboratory Activities - PlantStress Biotech INCT Sequencing and integrating transcriptomes of model plants (Arabdopsis , Setaria ) subjected to drought and high temperature during bioassays. Validate the function of plant genes potentially involved in the mechanisms of drought tolerance in Arabidopsis , rice or sepia plants via overexpression or silencing strategies. Generate PGMs from soybean, cotton and corn via strategies of overexpression or silencing of plant genes and evaluate the phenotype obtained regarding drought tolerance. Phenotyping (greenhouse or field) maize, soybean and cotton populations resulting from crossing GM events to obtain proof of concept of drought tolerance and/or resistance to Spodoptera frugiperda , Helicoverpa armigera or Meloidogyne spp. Generate PGMs from soybean, cotton and corn via strategies of overexpression or silencing of plant genes and evaluate the phenotype obtained regarding drought tolerance. Organize, maintain and share an in vivo bank of the innovation assets obtained in the project shared by INCT members. Joaquim Albenisio Gomes da Silveira Team Leader Dr. Joaquim works with Plant Physiology, with emphasis on the efficiency of photosynthesis mediated by redox metabolism, photorespiration and N assimilation under conditions of abiotic stress. He holds a Master's degree from CENA and a doctorate from ESALQ/USP. He was a post-doctorate fellow at the Laboratory of Molecular Biology of Plant Stress at ITQB/Universidade Nova de Lisboa (2014-2015). He was one of the cofounders of the Brazilian Society of Plant Physiology, and was President of the Organizing Committee of the III Brazilian Congress of Plant Physiology. He participated in the creation and publication of the Brazilian Journal of Plant Physiology (1989), currently named Theoretical and Experimental Plant Physiology. Dr. Joaquim has published more than 150 scientic articles in international journals. He has trained over 29 doctorate students, 36 master students and has supervised 10 post-doctoral fellows. Nowadays, he is a professor at the Federal University of Ceará (UFC) anda a CNPq 1A researcher. He is also the vice-coordinator of the Graduate Program in Biochemistr at UFC and the head of Plant Metabolism Laboratory at the same university. Contact Joaquim Albenisio Gomes da Silveira Universidade Federal do Ceará Campus do Pici - Bloco 907 - CeP 60440-900 - Fortaleza - CE E-mail: silveira@ufc.br Phone number: +55 85 3366-9821




